Context
Blood-based analytes as indicators of pathological processes in Alzheimer's disease (AD).
Objective
Combined proteomic and neuroimaging approach to identify plasma proteins associated with AD pathology.
Design
Discovery-phase proteomic experiments to identify plasma proteins associated with correlates of AD pathology including evidence of atrophy using neuroimaging and more rapid clinical progression, followed by replication using quantitative immunoassay. Extension studies in older non-demented humans using 11C-PiB amyloid imaging and transgenic mice with amyloid pathology.
Setting
Multi-center European study, AddNeuroMed, and the Baltimore Longitudinal Study of Aging (BLSA) in United States.
Participants
AD patients, mild cognitive impairment (MCI) subjects and healthy controls with standardized clinical assessments and structural neuroimaging. Plasma samples from non-demented older BLSA participants with brain amyloid imaging by PET.
Main outcome measures
Association of plasma proteins with brain atrophy, disease severity and rate of clinical progression. Extension studies in man and transgenic mice tested association between plasma proteins and brain amyloid.
Results
Clusterin/apolipoprotein-J was associated with atrophy of the entorhinal cortex, baseline disease severity and rapid clinical progression in AD. Increased plasma concentration of clusterin was predictive of greater beta amyloid (Aβ) burden in the medial temporal lobe. Subjects with AD had increased clusterin mRNA in blood but there was no effect of SNPs in the gene encoding clusterin (CLU) with gene or protein expression. Finally, APP/PS1 transgenic mice showed increased plasma clusterin, age-dependent increase in brain clusterin and amyloid and clusterin co-localisation in plaques.
Conclusions
Clusterin/apolipoprotein-J is a known amyloid chaperone associated with Alzheimer's disease severity, pathology and progression. Increased plasma concentration of clusterin is also associated with greater burden of fibrillar Aβ in the brain. These results demonstrate an important role of clusterin in the pathogenesis of AD and suggest that alterations in amyloid chaperone proteins may be a biologically relevant peripheral signature of Alzheimer's disease.
Much recent interest has focused on the potential of flavonoids to interact with intracellular signaling pathways such as with the mitogen-activated protein kinase cascade. We have investigated whether the observed strong neurotoxic potential of quercetin in primary cortical neurons may occur via specific and sensitive interactions within neuronal mitogen-activated protein kinase and Akt/protein kinase B (PKB) signaling cascades, both implicated in neuronal apoptosis. Quercetin induced potent inhibition of both Akt/PKB and ERK phosphorylation, resulting in reduced phosphorylation of BAD and a strong activation of caspase-3. High quercetin concentrations (30 M) led to sustained loss of Akt phosphorylation and subsequent Akt cleavage by caspase-3, whereas at lower concentrations (<10 M) the inhibition of Akt phosphorylation was transient and eventually returned to basal levels. Lower levels of quercetin also induced strong activation of the pro-survival transcription factor cAMP-responsive element-binding protein, although this did not prevent neuronal damage. O-Methylated quercetin metabolites inhibited Akt/PKB to lesser extent and did not induce such strong activation of caspase-3, which was reflected in the lower amount of damage they inflicted on neurons. In contrast, neither quercetin nor its O-methylated metabolites had any measurable effect on c-Jun N-terminal kinase phosphorylation. The glucuronide of quercetin was not toxic and did not evoke any alterations in neuronal signaling, probably reflecting its inability to enter neurons. Together these data suggest that quercetin and to a lesser extent its O-methylated metabolites may induce neuronal death via a mechanism involving an inhibition of neuronal survival signaling through the inhibition of both Akt/PKB and ERK rather than by an activation of the c-Jun N-terminal kinase-mediated death pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.