The formation and persistence of negative pain-related expectations by classical conditioning remain incompletely understood. We elucidated behavioural and neural correlates involved in the acquisition and extinction of negative expectations towards different threats across sensory modalities. In two complementary functional magnetic resonance imaging studies in healthy humans, differential conditioning paradigms combined interoceptive visceral pain with somatic pain (study 1) and aversive tone (study 2) as exteroceptive threats. Conditioned responses to interoceptive threat predictors were enhanced in both studies, consistently involving the insula and cingulate cortex. Interoceptive threats had a greater impact on extinction efficacy, resulting in disruption of ongoing extinction (study 1), and selective resurgence of interoceptive CS-US associations after complete extinction (study 2). In the face of multiple threats, we preferentially learn, store, and remember interoceptive danger signals. As key mediators of nocebo effects, conditioned responses may be particularly relevant to clinical conditions involving disturbed interoception and chronic visceral pain.
The ontogenetic mechanisms leading to complementary hemispheric specialisations of the two brain halves are poorly understood. In pigeons, asymmetrical light stimulation during development triggers the left-hemispheric dominance for visuomotor control but light effects on right-hemispheric specialisations are largely unknown. We therefore tested adult pigeons with and without embryonic light experience in a visual search task in which the birds pecked peas regularly scattered on an area in front of them. Comparing the pecking pattern of both groups indicates that the embryonic light conditions differentially influence biased visuospatial attention under mono- and binocular seeing conditions. When one eye was occluded, dark-incubated pigeons peck only within the limits of the visual hemifield of the seeing eye. Light-exposed pigeons also peck into the contralateral field indicating enlarged monocular visual fields of both hemispheres. While dark-incubated birds evinced an attentional bias to the right halfspace when seeing with both eyes, embryonic light exposure shifted this to the left. Thus, embryonic light experience modifies processes regulating biased visuospatial attention of the adult birds depending on the seeing conditions during testing. These data support the impact of light onto the emergence of functional dominances in both hemispheres and point to the critical role of interhemispheric processes.
The original version of this Article contained an error in the spelling of the author Liubov Petrakova, which was incorrectly given as Ljubov Petrakova. This has now been corrected in both the PDF and HTML versions of the Article.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.