Background Anastomotic leakage (AL) is one of the dreaded complications following surgery in the digestive tract. Nearinfrared fluorescence (NIRF) imaging is a means to intraoperatively visualize anastomotic perfusion, facilitating fluorescence image-guided surgery (FIGS) with the purpose to reduce the incidence of AL. The aim of this study was to analyze the current practices and results of NIRF imaging of the anastomosis in digestive tract surgery through the EURO-FIGS registry. Methods Analysis of data prospectively collected by the registry members provided patient and procedural data along with the ICG dose, timing, and consequences of NIRF imaging. Among the included upper-GI, colorectal, and bariatric surgeries, subgroup analysis was performed to identify risk factors associated with complications. Results A total of 1240 patients were included in the study. The included patients, 74.8% of whom were operated on for cancer, originated from 8 European countries and 30 hospitals. A total of 54 surgeons performed the procedures. In 83.8% of cases, a pre-anastomotic ICG dose was administered, and in 60.1% of cases, a post-anastomotic ICG dose was administered. A significant difference (p < 0.001) was found in the ICG dose given in the four pathology groups registered (range: 0.013-0.89 mg/kg) and a significant (p < 0.001) negative correlation was found between the ICG dose and BMI. In 27.3% of the procedures, the choice of the anastomotic level was guided by means of NIRF imaging which means that in these cases NIRF imaging changed the level of anastomosis which was first decided based on visual findings in conventional white light imaging. In 98.7% of the procedures, the use of ICG partly or strongly provided a sense of confidence about the anastomosis. A total of 133 complications occurred, without any statistical significance in the incidence of complications in the anastomoses, whether they were ICG-guided or not. ConclusionThe EURO-FIGS registry provides an insight into the current clinical practice across Europe with respect to NIRF imaging of anastomotic perfusion during digestive tract surgery.
Laparoscopic rectal resection for deep infiltrating endometriosis is a relatively safe procedure, when performed by a surgeon and a gynecologist with sufficient experience in laparoscopic colorectal surgery.
Single nucleotide polymorphisms (SNPs) in mitotic checkpoint genes can contribute to susceptibility of human cancer, including gastric cancer (GC). We aimed to investigate the effects of Aurora kinase A (AURKA), Aurora kinase B (AURKB), and Aurora kinase C (AURKC) gene polymorphisms on GC risk in Slovenian population. We genotyped four SNPs in AURKA (rs2273535 and rs1047972), AURKB (rs2241909), and AURKC (rs758099) in a total of 128 GC patients and 372 healthy controls using TaqMan allelic discrimination assays to evaluate their effects on GC risk. Our results showed that genotype frequencies between cases and controls were significantly different for rs1047972 and rs758099 (P < 0.05). Our study demonstrated that AURKA rs1047972 TT and (CC 1 CT) genotypes were significantly associated with an increased risk of gastric cancer. Our results additionally revealed that AURKC rs758099 TT and (CC 1 CT) genotypes were also associated with increased GC risk. In stratified analysis, genotypes TT and (CC 1 CT) of AURKA rs1047972 SNP were associated with increased risk of both, intestinal and diffuse, types of GC. In addition, AURKC rs758099 TT and (CC 1 CT) genotypes were positively associated with increased intestinal type GC risk, but not with an increased diffuse type GC risk. Based on these results, we can conclude that AURKA rs1047972 and AURKC rs758099 polymorphisms could affect the risk of GC development. Further larger studies are needed to confirm these findings. V C 2016 IUBMB Life, 68(8): [634][635][636][637][638][639][640][641][642][643][644] 2016
The experimental design presented in the study may be of potential value for clinicians: at least five relevant markers for both MSI and LOH analysis may be needed to evaluate a gastric cancer (GC) patient's clinical status.
Alterations of multiple oncogenes and tumor suppressor genes, together with genetic instability, are responsible for carcinogenesis in gastric cancer. The microsatellite mutator phenotype is the cause of many somatic frameshift and point mutations in non-coding repetitive sequences and in coding regions associated with cell proliferation and apoptosis. Genetic mutations in hMLH1 and transcriptional silencing of its promoter by hypermethylation lead to the inactivation of the mismatch repair system. In our study, we screened for mutations the hMLH1 gene in patients expressing the microsatellite instability genotype by using single-strand conformational polymorphism analysis and direct sequencing. Seven changes were identified; of these, three (A92P, E433Q, and K618A) were germline mutations and the other four (IVS5 453 + 79 A > G, I219V, 1039 - 7 del (T)(n), and IVS15 1668 - 19 A > G) germline polymorphisms. A92P and E433Q are novel, previously unidentified mutations. In addition, we found a rather complex distribution of mutations and polymorphisms in individual patients and in two cases also a methylated hMLH1 promoter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.