The V1/V2 and V3 loops are proximal to the CD4 binding site (CD4bs) of human immunodeficiency virus type 1 (HIV-1) gp120 and undergo conformational change upon CD4 receptor engagement by the HIV-1 envelope spike. Nearly all of the reported monoclonal antibodies (MAbs) against the CD4bs exhibit a very limited capacity to neutralize HIV-1. However, one such human MAb, immunoglobulin G1 (IgG1) b12, is uniquely able to neutralize primary isolates across subtypes with considerable potency. The molecular basis for the anti-HIV-1 activity of b12 is not fully understood but is relevant to vaccine design. Here we describe a novel human MAb, 4KG5, whose binding to monomeric gp120 is moderately enhanced by IgG1 b12. In sharp contrast, 4KG5 binding to gp120 is inhibited by soluble CD4 (sCD4) and by all other (n ؍ 14) anti-CD4bs MAbs tested. 4KG5 is unable to recognize gp120 in which either V1, V2, or V3 has been deleted, and MAbs against the V2 or V3 loops inhibit the binding of 4KG5 to gp120. Moreover, 4KG5 is able to inhibit the binding of the CD4-induced MAbs 17b and X5 in the absence of sCD4, whereas 17b and X5 only weakly inhibit the binding of 4KG5 to gp120. Mutagenesis of gp120 provides further evidence of a discontinuous epitope of 4KG5 that is formed by the V1/V2 loop, the V3 loop, and a portion of the bridging sheet (C4). 4KG5 was isolated as a single-chain Fv from a phage display library constructed from the bone marrow of an HIV-1-seropositive subject (FDA2) whose serum neutralizes HIV-1 across subtypes. Despite its source, we observed no significant neutralization with 4KG5 against the autologous (R2) virus and several other strains of HIV-1. The results suggest a model in which antibody access to the CD4bs on the envelope spike of HIV-1 is restricted by the orientation and/or dynamics of the V1/V2 and V3 loops, and b12 avoids these restrictions.
Leukemia inhibitory factor (LIF) mediates the hypothalamo-pituitary-adrenal stress response. Transgenic mice overexpressing LIF in the developing pituitary have altered pituitary differentiation with expansion of corticotropes, maintenance of Rathke's cleft cysts, and suppression of all other pituitary cell types. Affymetrix GeneChips were used to identify modulators of LIF effects in corticotrope (AtT-20) and somatolactotrope (GH(3)) cells. In addition to genes known to respond to LIF in corticotrope cells [e.g. suppressor of cytokine signaling-3 (SOCS-3), signal transducer and activator of transcription-3, SH2 domain-containing tyrosine phosphatase-1, and proopiomelanocortin (POMC)], corticotrope-specific changes were also observed for genes involved in glycolysis and gluconeogenesis, transcription factors, signaling molecules, and expressed sequence tags. Two transcription factors identified, CCAAT/enhancer-binding protein beta (C/EBPbeta) and glial cell-derived neurotrophic factor (GDNF)-inducible factor (GIF), dose-dependently induced expression of the rat POMC promoter when overexpressed in AtT-20 cells. LIF further induced POMC transcription with C/EBPbeta, but not with GIF. C/EBPbeta also induced expression of the SOCS-3 promoter that was further enhanced by cotreatment with LIF. However, GIF did not affect SOCS-3 expression. These results indicate that C/EBPbeta and GIF are downstream effectors of LIF corticotrope action. LIF also stimulates the expression of inhibitors of its actions, such as SOCS-3 and SH2 domain-containing tyrosine phosphatase-1. alpha(2)-HS-glycoprotein (AHSG)/fetuin, a secreted protein that antagonizes bone TGFbeta/bone morphogenic protein signaling, was induced by LIF in a signal transducer and activator of transcription-3-dependent fashion. Pretreatment with AHSG/fetuin blocked LIF-induced expression of the POMC promoter independently of SOCS-3. Thus, using GeneChips, C/EBPbeta and GIF have been identified as novel mediators and AHSG/fetuin as an inhibitor of LIF action in corticotropes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.