Significance: Historically, honey has been regarded as a potent agent in bacterial inhibition and wound healing. An increased prevalence of antibiotic resistant pathogens spurred an initial resurgence in honey's clinical popularity, with it quickly finding a place in wound care and regenerative medicine. However, this renewed usage demanded a need for improved delivery and overall research of its bioactive properties. This review provides an overview of the antibacterial properties and clinical use of honey. Recent Advances: The past and present clinical use of honey is noted, focusing specifically on burns and ulcers, as these are the most common applications of the natural agent. While honey is often used without modification clinically, there are also commercially available products ranging from dressings to gels, which are discussed. Critical Issues: Despite these products growing in popularity, the need for improved delivery and a structure to support wound healing could improve the treatment method. Future Directions: Tissue engineering scaffolds can provide an alternative method of honey delivery with research focusing primarily on electrospun scaffolds, hydrogels, and cryogels. Current studies on these scaffolds are discussed with respect to their advantages and potential for future clinical work. Overall, this review provides a comprehensive overview of the properties of honey, its current use in wound healing, and the potential for future incorporation into tissue-engineered scaffolds to provide an innovative wound healing agent.
Caused by the oxidative dissolution of sulfide minerals, mine waters are often acidic and contaminated with high concentrations of sulfates, metals, and metalloids. Because the so-called acid mine drainage (AMD) affects the environment or poses severe problems for later use, treatment of these waters is required. Therefore, various remediation strategies have been developed to remove soluble metals and sulfates through immobilization using physical, chemical, and biological approaches. Conventionally, iron and sulfate-the main pollutants in mine waters-are removed by addition of neutralization reagents and subsequent chemical iron oxidation and sulfate mineral precipitation. Biological treatment strategies take advantage of the ability of microorganisms that occur in mine waters to metabolize iron and sulfate. As a rule, these can be grouped into oxidative and reductive processes, reflecting the redox state of mobilized iron (reduced form) and sulfur (oxidized form) in AMD. Changing the redox states of iron and sulfur results in iron and sulfur compounds with low solubility, thus leading to their precipitation and removal. Various techniques have been developed to enhance the efficacy of these microbial processes, as outlined in this review.
Ventilation is of primary concern for maintaining healthy indoor air quality and reducing the spread of airborne infectious disease, including COVID-19. In addition to building-level guidelines, increased attention is being placed on room-level ventilation. However, for many universities and schools, ventilation data on a room-by-room basis are not available for classrooms and other key spaces. We present an overview of approaches for measuring ventilation along with their advantages and disadvantages. We also present data from recent case studies for a variety of institutions across the United States, with various building ages, types, locations, and climates, highlighting their commonalities and differences, and examples of the use of this data to support decision making.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.