The Adaptive Poisson-Boltzmann Solver (APBS) software was developed to solve the equations of continuum electrostatics for large biomolecular assemblages that have provided impact in the study of a broad range of chemical, biological, and biomedical applications. APBS addresses the three key technology challenges for understanding solvation and electrostatics in biomedical applications: accurate and efficient models for biomolecular solvation and electrostatics, robust and scalable software for applying those theories to biomolecular systems, and mechanisms for sharing and analyzing biomolecular electrostatics data in the scientific community. To address new research applications and advancing computational capabilities, we have continually updated APBS and its suite of accompanying software since its release in 2001. In this article, we discuss the models and capabilities that have recently been implemented within the APBS software package including a Poisson-Boltzmann analytical and a semi-analytical solver, an optimized boundary element solver, a geometry-based geometric flow solvation model, a graph theory-based algorithm for determining pK values, and an improved web-based visualization tool for viewing electrostatics.
Adsorption of water on the Si(100)-(2×1) surface has been investigated using density functional theory and cluster models of the surface. The reaction pathway and geometries of the product, the transition state and a molecular precursor state are described. There is no energy barrier to dissociative chemisorption. Adsorbed H and OH fragments are most stable when bonded to the same surface dimer with the hydroxyl oriented away from the surface dimer bond. The orbital and electrostatic interactions that determine the adsorbate and transition state geometries are analyzed. Surface distortion (dimer buckling) is a recurring theme in this analysis. Interactions of adsorbed molecular fragments with each other and with dangling bonds have significant effects, modifying the adsorbate geometry and leading to adsorbate islanding. Calculated vibrational frequencies of adsorbed H2O on Si(100)-(2×1) are discussed. The theoretical results are consistent with most available experimental results, and provide a microscopic description of the interactions that account for the observations.
Density functional and electrostatic methods have been applied to calculate active site geometries and the redox potential of manganese superoxide dismutase (MnSOD). The initial active site clusters were built up by including only first-shell side chain ligands and then augmented by second-shell ligands. The density functional optimized Mn-ligand bond lengths for the reduced complexes in general compared fairly well with protein crystallography data; however, large deviations for calculated Mn-OH distances were found for the oxidized active site clusters. Our calculations suggest that this deviation can be attributed to the redox heterogeneity of the oxidized protein in X-ray crystallography studies. The redox potential was calculated by treating the protein environment and the solvent bulk by a semimacroscopic electrostatic model. The protein structures were taken from the Thermus thermophilus enzyme. The calculated coupled redox potentials converge toward experimental values with increasing size of the active site cluster models, and the final calculated value was +0.06 V, compared to experimental values of +0.26 V determined for Bacillus stearothermophilus and +0.31 V in Escherichia coli enzymes. Using an energy decomposition scheme, the effects of the second-shell ligands and the protein and reaction fields have been analyzed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.