Hybrid organically linked silica is a highly promising class of materials for the application in energy‐efficient molecular separation membranes. Its high stability allows operation under aggressive working conditions. Herein is reported the tailoring of the separation performance of these hybrid silica membranes by adjusting the size, flexibility, shape, and electronic structure of the organic bridging group. A single generic procedure is applied to synthesize nanoporous membranes from bridged silsesquioxane precursors with different reactivities. Membranes with short alkylene (CH2 and C2H4) bridging groups show high H2/N2 permeance ratios, related to differences in molecular size. The highest CO2/H2 permeance ratios, related to the affinity of adsorption in the material, are obtained for longer (C8H16) alkylene and aryl bridges. Materials with long flexible alkylene bridges have a hydrophobic surface and show strongly temperature‐dependent molecular transport as well as a high n‐butanol flux in a pervaporation process, which is indicative of organic polymerlike properties. The versatility of the bridging group offers an extensive toolbox to tune the nanostructure and the affinity of hybrid silica membranes and by doing so to optimize the performance towards specific separation challenges. This provides excellent prospects for industrial applications such as carbon capture and biofuel production.
Unprecedented hydrothermal stability in functional membranes has been obtained with hybrid organic-inorganic nanoporous materials, enabling long-term application in energy-efficient molecular separation, including dehydration up to at least 150 degrees C.
Novel strategies for the preparation of rigid cartwheel pincer metal complexes have been developed. The aromatic backbone of these materials ensures a high rigidity, which is expected to be important for a high retention when these multimetallic nanosize complexes are applied as homogeneous catalysts in a nanomembrane reactor. The ligand precursors C 6 [C 6 H 3 (CH 2 Y) 2 -3,5] 6 (10, Y ) NMe 2 ; 11, Y ) SPh; 12, Y ) PPh 2 ; 13, Y ) pz ) pyrazol-1-yl) have been prepared in high yields from the key intermediate C 6 [C 6 H 3 (CH 2 Br) 2 -3,5] 6 (9). The hexakis(pincer) palladium(II) complexes 3,5-dimethylpyrazol-1-yl; 23) were superior to the P,C,P′-and S,C,S′-pincer complexes (1d, Y ) PPh 2 ; 1e, Y ) SPh). The nanosize cationic tri-N,C,N′ Pd II complex 23 was found to have a catalytic activity per catalytic site in the double Michael reaction of the same order of magnitude as the monopincer analogue 1a (k ) 279 × 10 -6 s -1 for 1a vs k ) 232 × 10 -6 s -1 for 23). The combination of the nanosize dimensions, the catalytic activity, and the high thermal and air stability makes these complexes excellent candidates for application in a continuous process in a nanomembrane reactor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.