New fentanyl analogs have recently emerged as new psychoactive substances and have caused numerous fatalities worldwide. To determine if the new analogs follow the same metabolic pathways elucidated for fentanyl and known fentanyl analogs, we performed in vitro and in vivo metabolite identification studies for acetylfentanyl, acrylfentanyl, 4-fluoro-isobutyrylfentanyl, and furanylfentanyl. All compounds were incubated at 10 μM with pooled human hepatocytes for up to 5 h. For each compound, four or five authentic human urine samples from autopsy cases with and without enzymatic hydrolysis were analyzed. Data acquisition was performed in data-dependent acquisition mode during liquid chromatography high-resolution mass spectrometry analyses. Data was analyzed (1) manually based on predicted biotransformations and (2) with MetaSense software using data-driven search algorithms. Acetylfentanyl, acrylfentanyl, and 4-fluoro-isobutyrylfentanyl were predominantly metabolized by N-dealkylation, cleaving off the phenethyl moiety, monohydroxylation at the ethyl linker and piperidine ring, as well as hydroxylation/methoxylation at the phenyl ring. In contrast, furanylfentanyl's major metabolites were generated by amide hydrolysis and dihydrodiol formation, while the nor-metabolite was minor or not detected in case samples at all. In general, in vitro results matched the in vivo findings well, showing identical biotransformations in each system. Phase II conjugation was observed, particularly for acetylfentanyl. Based on our results, we suggest the following specific and abundant metabolites as analytical targets in urine: a hydroxymethoxy and monohydroxylated metabolite for acetylfentanyl, a monohydroxy and dihydroxy metabolite for acrylfentanyl, two monohydroxy metabolites and a hydroxymethoxy metabolite for 4-fluoro-isobutyrylfentanyl, and a dihydrodiol metabolite and the amide hydrolysis metabolite for furanylfentanyl.
Abstract. Whereas non-fluoropentylindole/indazole synthetic cannabinoids appear to be metabolized preferably at the pentyl chain though without clear preference for one specific position, their 5-fluoro analogs' major metabolites usually are 5-hydroxypentyl and pentanoic acid metabolites. We determined metabolic stability and metabolites of N-(1-amino-3-methyl-1-oxobutan-2-yl)-1-pentyl-1H-indazole-3-carboxamide (AB-PINACA) and 5-fluoro-AB-PINACA (5F-AB-PINACA), two new synthetic cannabinoids, and investigated if results were similar. In silico prediction was performed with MetaSite (Molecular Discovery). For metabolic stability, 1 μmol/L of each compound was incubated with human liver microsomes for up to 1 h, and for metabolite profiling, 10 μmol/L was incubated with pooled human hepatocytes for up to 3 h. Also, authentic urine specimens from AB-PINACA cases were hydrolyzed and extracted. All samples were analyzed by liquid chromatography high-resolution mass spectrometry on a TripleTOF 5600+ (AB SCIEX) with gradient elution (0.1% formic acid in water and acetonitrile). High-resolution full-scan mass spectrometry (MS) and information-dependent acquisition MS/MS data were analyzed with MetabolitePilot (AB SCIEX) using different data processing algorithms. Both drugs had intermediate clearance. We identified 23 AB-PINACA metabolites, generated by carboxamide hydrolysis, hydroxylation, ketone formation, carboxylation, epoxide formation with subsequent hydrolysis, or reaction combinations. We identified 18 5F-AB-PINACA metabolites, generated by the same biotransformations and oxidative defluorination producing 5-hydroxypentyl and pentanoic acid metabolites shared with AB-PINACA. Authentic urine specimens documented presence of these metabolites. AB-PINACA and 5F-AB-PINACA produced suggested metabolite patterns. AB-PINACA was predominantly hydrolyzed to AB-PINACA carboxylic acid, carbonyl-AB-PINACA, and hydroxypentyl AB-PINACA, likely in 4-position. The most intense 5F-AB-PINACA metabolites were AB-PINACA pentanoic acid and 5-hydroxypentyl-AB-PINACA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.