During processing and digestion, milk proteins are disassembled into peptides with an array of biological functions, including antimicrobial, angiotensin-converting enzyme inhibition, antioxidant, opioid, and immunomodulation. These functions are summarized in numerous reviews, yet information on which peptides have which functions remains scattered across hundreds of research articles. We systematically searched the literature for all instances of bioactive peptides derived from milk proteins from any mammalian source. The data were compiled into a comprehensive database, which can be used to search for specific functions, peptides, or proteins (http://mbpdb.nws.oregonstate.edu). To review this large dataset, the bioactive peptides reported in the literature were visually mapped on the parent protein sequences, providing information on sites with highest abundance of bioactive peptides.
Human milk provides immunoglobulins (Igs) that supplement the passive immune system of neonates; however, the extent of survival of these Igs during gastric digestion and whether this differs between preterm and term infants remains unknown. Human milk, and infant gastric samples at 2 h post-ingestion were collected from 15 preterm (23–32 week gestational age (GA)) mother-infant pairs and from 8 term (38–40 week of GA) mother-infant pairs within 7–98 days postnatal age. Samples were analyzed via ELISA for concentration of total IgA (secretory IgA (SIgA)/IgA), total secretory component (SC/SIgA/SIgM), total IgM (SIgM/IgM), and IgG as well as peptidomics. Total IgA concentration decreased by 60% from human milk to the preterm infant stomach and decreased by 48% in the term infant stomach. Total IgM and IgG concentrations decreased by 33% and 77%, respectively, from human milk to the term infant stomach but were stable in the preterm infant stomach. Release of peptides from all Ig isotypes in the term infant stomach was higher than in the preterm stomach. Overall, the stability of human milk Igs during gastric digestion is higher in preterm infant than in term infants, which could be beneficial for assisting the preterm infants’ immature immune system.
Previous work demonstrates that proteases present in human milk release hundreds of peptides derived from milk proteins. However, the question of whether human milk protein digestion begins within the mammary gland remains incompletely answered. The primary objective of this study was to determine whether proteolytic degradation of human milk proteins into peptides begins within the mammary gland. The secondary objectives were to determine which milk proteases participate in the proteolysis and to predict which released peptides have bioactivity. Lactating mothers (n = 4) expressed their milk directly into a mixture of antiproteases on ice followed by immediate freezing of the milk to limit post-expression protease activity. Samples were analyzed for their peptide profiles via mass spectrometry and database searching. Peptidomics-based protease prediction and bioactivity prediction were each performed with several different approaches. The findings demonstrate that human milk contains more than 1,100 unique peptides derived from milk protein hydrolysis within the mammary gland. These peptides derived from 42 milk proteins and included 306 potential bioactive peptides. Based on the peptidomics data, plasmin was predicted to be the milk protease most active in the hydrolysis of human milk proteins within the mammary gland. Milk proteases actively cleave milk proteins within the mammary gland, initiating the release of functional peptides. Thus, the directly breastfed infant receives partially pre-digested proteins and numerous bioactive peptides.
Digestion of milk proteins in the premature infant stomach releases functional peptides; however, which peptides are present has not been reported. Premature infants are often fed a combination of human milk and bovine milk fortifiers, but the variety of functional peptides released from both human and bovine milk proteins remains uncharacterized. This study applied peptidomics to investigate the peptides released in gastric digestion of mother’s milk proteins and supplemental bovine milk proteins in premature infants. Peptides were assessed for homology against a database of known functional peptides—Milk Bioactive Peptide Database. The peptidomic data were analyzed to interpret which proteases most likely released them from the parent protein. We identified 5,264 unique peptides from bovine and human milk proteins within human milk, fortifier or infant gastric samples. Plasmin was predicted to be the most active protease in milk, while pepsin or cathepsin D were predicted to be most active in the stomach. Alignment of the peptide distribution showed a different digestion pattern between human and bovine proteins. The number of peptides with high homology to known functional peptides (antimicrobial, angiotensin-converting enzyme-inhibitory, antioxidant, immunomodulatory, etc.) increased from milk to the premature infant stomach and was greater from bovine milk proteins than human milk proteins. The differential release of bioactive peptides from human and bovine milk proteins may impact overall health outcomes in premature infants.
Over the course of milk digestion, native milk proteases and infant digestive proteases fragment intact proteins into peptides with potential bioactivity. This study investigated the release of peptides over 3 h of gastric digestion in 14 preterm infant sample sets. The peptide content was extracted and analyzed from milk and gastric samples via Orbitrap tandem mass spectrometry. The relative ion intensity (abundance) and count of peptides in each sample were compared over time and between infants fed milk fortified with bovine milk fortifier and infants fed unfortified milk. Bioactivity of the identified peptides was predicted by sequence homology to known bioactive milk peptides. Both total and bioactive peptide abundance and count continuously increased over 3 h of gastric digestion. After accounting for infant weight, length, and postconceptual age, fortification of milk limited the release of peptides from human milk proteins. Peptides that survived further gastric digestion after their initial release were structurally more similar to bioactive peptides than nonsurviving peptides. This work is the first to provide a comprehensive profile of milk peptides released during gastric digestion over time, which is an essential step in determining which peptides are most likely to be biologically relevant in the infant. Data are available via ProteomeXchange with identifier PXD012192.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.