Abstract. We develop a theory of difference approximations to absorbing boundary conditions for the scalar wave equation in several space dimensions. This generalizes the work of the author described in [8].The theory is based on a representation of analytical absorbing boundary conditions proven in [8]. These conditions are defined by compositions of first-order, one-dimensional differential operators. Here the operators are discretized individually, and their composition is used as a discretization of the boundary condition. The analysis of stability and reflection properties reduces to separate studies of the individual factors. A representation of the discrete boundary conditions makes it possible to perform the analysis geometrically, with little explicit calculation.
Abstract. We consider the problem of constructing absorbing boundary conditions for the multi-dimensional wave equation. Here we work directly with a difference approximation to the equation, rather than first finding analytical boundary conditions and then discretizing the analytical conditions. This approach yields some simple and effective discrete conditions. These discrete conditions are consistent with analytical conditions that are perfectly absorbing at certain nonzero angles of incidence. This fact leads to a simple and general canonical form for analytical absorbing boundary conditions. The use of this form has theoretical and practical advantages.
Absorbing boundary conditions are needed for computing numerical models of wave motions in unbounded spatial domains. The boundary conditions developed here for elastic waves are generalizations of ones developed earlier for acoustic waves. These conditions are based on compositions of simple first‐order differential operators. The formulas can be applied without modification to problems in both two and three dimensions. The boundary conditions are stable for all values of the ratio of P‐wave velocity to S‐wave velocity, and they are effective near a free surface and in a horizontally stratified medium. The boundary conditions are approximated with simple finite‐difference equations that use values of the solution only along grid lines perpendicular to the boundary. This property facilitates implementation, especially near a free surface and at other corners of the computational domain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.