In humans, epidermal melanocytes are responsible for skin pigmentation, defense against ultraviolet radiation, and the deadliest common skin cancer, melanoma. While there is substantial overlap in melanocyte development pathways between different model organisms, species dependent differences are frequent and the conservation of these processes in human skin remains unresolved 1-3 . Thus, the biology of developing and adult human melanocytes remains largely uncharacterized. Here, we used a single-cell enrichment and RNA-sequencing pipeline to study human epidermal melanocytes derived directly from skin, capturing transcriptomes across different anatomic sites, developmental age, sexes, and multiple skin tones. Using donor-matched skin from distinct volar and non-volar anatomic locations, we uncovered subpopulations of melanocytes exhibiting site-specific enrichment that occurs during gestation and persists through adulthood. In addition, we identified human melanocyte differentiation transcriptional programs that are distinct from gene signatures generated from model systems. Finally, we use these programs to define patterns of dedifferentiation that are predictive of melanoma prognosis. Overall, the characterization of human melanocytes fresh from skin revealed new subpopulations, human-specific transcriptional programs, and valuable insights into melanoma dedifferentiation. INTRODUCTION:Epidermal melanocytes, the pigment producing cells of human skin, are responsible for skin tone and orchestrate the primary defense against damage from ultraviolet (UV) radiation. Some anatomic site-specific differences in pigmentation are due to environmental factors, such as the tanning response to UV exposure. Others, like the hypopigmentation at volar sites (such as palms and soles), are present at birth. In adult skin, mesenchymal -epithelial interactions are known to influence anatomic site-specific melanocyte survival and pigment production 4 but melanocyte intrinsic factors that contribute to site-specific specialization remain unclear.Model organisms are powerful tools for investigating melanocyte development. In chick and mouse, a transient, multipotent neural crest cell population gives rise to committed immature melanocyte precursors, called melanoblasts, via two spatially and temporally distinct pathways 2,3 . Such studies focus primarily on melanocytes in skin appendages (hair follicle, feather, and sweat gland). However, despite constituting the predominate subtype in human skin, resident epidermal melanocytes have not been the subject of analogous investigations into developmental trajectories and anatomic-specializations.Melanocytes can give rise to melanomas which present distinct phenotypic and genomic characteristics correlated with primary tumor location 5,6 . Like many cancers, melanoma progression is coupled to dedifferentiation of the cell of origin 7 . The aggressive nature of melanoma is proposed to be rooted in unique attributes of the melanocytic linage 8 . Decoding the transcriptome of epidermal mela...
Quantitative phase imaging (QPI) is a label-free, wide-field microscopy approach with significant opportunities for biomedical applications. QPI uses the natural phase shift of light as it passes through a transparent object, such as a mammalian cell, to quantify biomass distribution and spatial and temporal changes in biomass. Reported in cell studies more than 60 years ago, ongoing advances in QPI hardware and software are leading to numerous applications in biology, with a dramatic expansion in utility over the past two decades. Today, investigations of cell size, morphology, behavior, cellular viscoelasticity, drug efficacy, biomass accumulation and turnover, and transport mechanics are supporting studies of development, physiology, neural activity, cancer, and additional physiological processes and diseases. Here, we review the field of QPI in biology starting with underlying principles, followed by a discussion of technical approaches currently available or being developed, and end with an examination of the breadth of applications in use or under development. We comment on strengths and shortcomings for the deployment of QPI in key biomedical contexts and conclude with emerging challenges and opportunities based on combining QPI with other methodologies that expand the scope and utility of QPI even further.
Every cell in the human body has a unique set of somatic mutations, yet it remains difficult to comprehensively genotype an individual cell. Here, we developed solutions to overcome this obstacle in the context of normal human skin, thus offering the first glimpse into the genomic landscapes of individual melanocytes from human skin. We comprehensively genotyped 133 melanocytes from 19 sites across 6 donors. As expected, sun-shielded melanocytes had fewer mutations than sun-exposed melanocytes. However, within sun-exposed sites, melanocytes on chronically sun-exposed skin (e.g. the face) displayed a lower mutation burden than melanocytes on intermittently sun-exposed skin (e.g. the back). Melanocytes located adjacent to a skin cancer had higher mutation burdens than melanocytes from donors without skin cancer, implying that the mutation burden of normal skin can be harnessed to measure cumulative sun damage and skin cancer risk. Moreover, melanocytes from healthy skin commonly harbor pathogenic mutations, likely explaining the origins of the melanomas that arise in the absence of a pre-existing nevus. Phylogenetic analyses identified groups of related melanocytes, suggesting that melanocytes spread throughout skin as fields of clonally related cells, invisible to the naked eye. Overall, our study offers an unprecedented view into the genomic landscapes of individual melanocytes, revealing key insights into the causes and origins of melanoma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.