Ten normal and four transplanted canine jugular vein segments and four human saphenous vein segments were studied to determine the in vitro static elastic properties of venous tissue and their modification by transplantation into the arterial system. Both the intraluminal pressure and the longitudinal force were varied, and the resulting dimensions were recorded photographically. Venous segments manifested a hysteresis response but showed minimum tendency to creep. The pressure-strain relationships were curvilinear with an initial, highly compliant phase over the physiological venous pressure range followed by a relatively noncompliant phase. This transition occurred at lower pressures for jugular segments than it did for saphenous segments. In contrast, comparable-sized canine carotide artery segments did not show this essentially noncompliant phase over the pressure range studied (0 to 200 cm H2O). At comparable pressures and strains, the jugular vein segments were stiffer than the saphenous vein segments in both the circumferential and the longitudinal directions. At comparable strains, the saphenous vein moduli were similar to those in the carotid artery segments. Jugular segments transplanted into arterial circuits became virtually noncompliant and markedly inhomogeneous, with wall thickening and a histologic picture of intimal proliferation. They showed no tendency to "arterialize," that is, they failed to assume either the elastic or the histologic characteristics of arterial tissue.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.