The NCCN Guidelines for Bone Cancer provide interdisciplinary recommendations for treating chordoma, chondrosarcoma, giant cell tumor of bone, Ewing sarcoma, and osteosarcoma. These NCCN Guidelines Insights summarize the NCCN Bone Cancer Panel's guideline recommendations for treating Ewing sarcoma. The data underlying these treatment recommendations are also discussed.
Rapid bone regeneration within a three-dimensional defect without the use of bone grafts, exogenous growth factors, or cells remains a major challenge. We report here on the use of selfassembling peptide nanostructured gels to promote bone regeneration that have the capacity to mineralize in biomimetic fashion. The main molecular design was the use of phosphoserine residues in the sequence of a peptide amphiphile known to nucleate hydroxyapatite crystals on the surfaces of nanofibers. We tested the system in a rat femoral critical size defect by placing preassembled nanofiber gels in a 5 mm gap and analyzed bone formation with micro-computed tomography and histology. We found within 4 weeks significantly higher bone formation relative to controls lacking phosphorylated residues and comparable bone formation to that observed in animals treated with a clinically used allogenic bone matrix.
Current modeling of endothelial cell mechanics does not account for the network of F-actin that permeates the cytoplasm. This network, the distributed cytoplasmic structural actin (DCSA), extends from apical to basal membranes, with frequent attachments. Stress fibers are intercalated within the network, with similar frequent attachments. The microscopic structure of the DCSA resembles a foam, so that the mechanical properties can be estimated with analogy to these well-studied systems. The moduli of shear and elastic deformations are estimated to be on the order of 10(5) dynes/cm2. This prediction agrees with experimental measurements of the properties of cytoplasm and endothelial cells reported elsewhere. Stress fibers can potentially increase the modulus by a factor of 2-10, depending on whether they act in series or parallel to the network in transmitting surface forces. The deformations produced by physiological flow fields are of insufficient magnitude to disrupt cell-to-cell or DCSA cross-linkages. The questions raised by this paradox, and the ramifications of implicating the previously unreported DCSA as the primary force transmission element are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.