FOXP2, the first gene to have been implicated in a developmental communication disorder, offers a unique entry point into neuromolecular mechanisms influencing human speech and language acquisition. In multiple members of the well-studied KE family, a heterozygous missense mutation in FOXP2 causes problems in sequencing muscle movements required for articulating speech (developmental verbal dyspraxia), accompanied by wider deficits in linguistic and grammatical processing. Chromosomal rearrangements involving this locus have also been identified. Analyses of FOXP2 coding sequence in typical forms of specific language impairment (SLI), autism, and dyslexia have not uncovered any etiological variants. However, no previous study has performed mutation screening of children with a primary diagnosis of verbal dyspraxia, the most overt feature of the disorder in affected members of the KE family. Here, we report investigations of the entire coding region of FOXP2, including alternatively spliced exons, in 49 probands affected with verbal dyspraxia. We detected variants that alter FOXP2 protein sequence in three probands. One such variant is a heterozygous nonsense mutation that yields a dramatically truncated protein product and cosegregates with speech and language difficulties in the proband, his affected sibling, and their mother. Our discovery of the first nonsense mutation in FOXP2 now opens the door for detailed investigations of neurodevelopment in people carrying different etiological variants of the gene. This endeavor will be crucial for gaining insight into the role of FOXP2 in human cognition.
Phenoconversion is a phenomenon that converts genotypic extensive metabolizers (EMs) into phenotypic poor metabolizers (PMs) of drugs, thereby modifying their clinical response to that of genotypic PMs. Phenoconversion, usually resulting from nongenetic extrinsic factors, has a significant impact on the analysis and interpretation of genotype-focused clinical outcome association studies and personalizing therapy in routine clinical practice. The high phenotypic variability or genotype-phenotype mismatch, frequently observed due to phenoconversion within the genotypic EM population, means that the real number of phenotypic PM subjects may be greater than predicted from their genotype alone, because many genotypic EMs would be phenotypically PMs. If the phenoconverted population with genotype-phenotype mismatch, most extensively studied for CYP2D6, is as large as the evidence suggests, there is a real risk that genotype-focused association studies, typically correlating only the genotype with clinical outcomes, may miss clinically strong pharmacogenetic associations, thus compromising any potential for advancing the prospects of personalized medicine. This review focuses primarily on co-medication-induced phenoconversion and discusses potential approaches to rectify some of the current shortcomings. It advocates routine phenotyping of subjects in genotype-focused association studies and proposes a new nomenclature to categorize study populations. Even with strong and reliable data associating patients' genotypes with clinical outcome(s), there are problems clinically in applying this knowledge into routine pharmacotherapy because of potential genotype-phenotype mismatch. Drug-induced phenoconversion during routine clinical practice remains a major public health issue. Therefore, the principal challenges facing personalized medicine, which need to be addressed, include identification of the following factors: (i) drugs that are susceptible to phenoconversion; (ii) co-medications that can cause phenoconversion; and (iii) dosage amendments that need to be applied during and following phenoconversion. Pharmacogenetics and personalized medicineThe majority of drug-metabolizing enzymes (DMEs) are subject to genetic polymorphism and show some degree of functionally significant polymorphism in the population. The clearest data in this regard relate to cytochromes P450 CYP2D6 and CYP2C19 and thiopurine methyltransferase (TPMT). These genetically determined polymorphisms give rise to three distinct genotype-based subpopulations with respect to each DME, namely extensive metabolizers (EMs), poor metabolizers (PMs) and a subgroup in between, the intermediate metabolizers (IMs). In addition, for CYP2D6 and CYP2C19, there is a fourth genotype, the ultrarapid metabolizer (UM) genotype, resulting from inheritance of either multiple copies of the functional wild-type allele, such as CYP2D6*1, or a higher metabolic capacity resulting from increased transcription of DME due to the presence of a genetic variant found in the promoter ...
Individuals with primary trimethylaminuria exhibit a body odour reminiscent of rotting fish, due to excessive excretion of trimethylamine (TMA; refs 1-3). The disorder, colloquially known as fish-odour syndrome, is inherited recessively as a defect in hepatic N-oxidation of dietary-derived TMA and cannot be considered benign, as sufferers may display a variety of psychosocial reactions, ranging from social isolation of clinical depression and attempted suicide. TMA oxidation is catalyzed by flavin-containing mono-oxygenase (FMO; refs 7,8), and tissue localization and functional studies have established FMO3 as the form most likely to be defective in fish-odour syndrome. Direct sequencing of the coding exons of FMO3 amplified from a patient with fish-odour syndrome identified two missense mutations. Although one of these represented a common polymorphism, the other, a C-->T transition in exon 4, was found only in an affected pedigree, in which it segregated with the disorder. The latter mutation predicts a proline-->leucine substitution at residue 153 and abolishes FMO3 catalytic activity. Our results indicate that defects in FMO3 underlie fish-odour syndrome and that the Pro 153-->Leu 153 mutation described here is a cause of this distressing condition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.