Herpesviruses replicate their double stranded DNA genomes as high-molecular-weight concatemers which are subsequently cleaved into unit-length genomes by a complex mechanism that is tightly coupled to DNA insertion into a preformed capsid structure, the procapsid. The herpes simplex virus type 1 UL25 protein is incorporated into the capsid during DNA packaging, and previous studies of a null mutant have demonstrated that its function is essential at the late stages of the head-filling process, either to allow packaging to proceed to completion or for retention of the viral genome within the capsid. We have expressed and purified an N-terminally truncated form of the 580-residue UL25 protein and have determined the crystallographic structure of the region corresponding to amino acids 134 to 580 at 2.1-Å resolution. This structure, the first for any herpesvirus protein involved in processing and packaging of viral DNA, reveals a novel fold, a distinctive electrostatic distribution, and a unique "flexible" architecture in which numerous flexible loops emanate from a stable core. Evolutionary trace analysis of UL25 and its homologues in other herpesviruses was used to locate potentially important amino acids on the surface of the protein, leading to the identification of four putative docking regions for protein partners.
The ubiquitous MRG/MORF family of proteins is involved in cell senescence, or the terminal loss of proliferative potential, a model for aging and tumor suppression at the cellular level. These proteins are defined by the approximately 20 kDa MRG domain that binds a plethora of transcriptional regulators and chromatin-remodeling factors, including the histone deacetylase transcriptional corepressor mSin3A and the novel nuclear protein PAM14, and they are also known components of the Tip60/NuA4 complex via interactions with the MRG binding protein (MRGBP). We present here the crystal structure of a prototypic MRG domain from human MRG15 whose core consists of two orthogonal helix hairpins. Despite the lack of sequence similarity, the core structure has surprisingly striking homology to a DNA-interacting domain of the tyrosine site-specific recombinases XerD, lambda integrase, and Cre. Site-directed mutagenesis studies based on the X-ray structure and bioinformatics identified key residues involved in the binding of PAM14 and MRGBP.
ObjectiveSystemic sclerosis (SSc) is an autoimmune disease clinically manifesting as progressive fibrosis of the skin and internal organs. Cadherin-11 (CDH11) expression is increased in fibrotic skin and lung tissue. Targeting CDH11 may be an effective approach to treating fibrosis. We hypothesize that targeting CDH11 will decrease fibrosis in the tight skin-1 (Tsk-1) mouse model.MethodsCDH11 expression was determined in the Tsk-1 mouse model using quantitative real time PCR and immunofluorescence (IF). Inhibitory anti- CDH11 monoclonal antibodies were tested in Tsk-1 mice for their ability to decrease hypodermal fibrosis.ResultsExpression of CDH11 was increased in fibrotic skin from Tsk-1 mice compared to pallid controls. IF staining demonstrated that CDH11 expression localized to fibroblasts within the hypodermis of fibrotic skin. Treatment with inhibitory anti-CDH11 monoclonal antibodies decreased hypodermal thickness and fibrotic mediators in Tsk-1 mice compared to control antibodies.ConclusionsThese data demonstrate an important role for CDH11 in the development of skin fibrosis in Tsk-1 mice. These data add to the growing evidence for the important role of CDH11 in tissue fibrosis and fibrotic disease such as systemic sclerosis.
In this nested case-control correlative study, vitamin D levels were not significantly associated with development of AIA; however, patients with the Fok-I VDR variant genotype were more likely to have a significant reduction in IL-1β level, and less likely to develop AIA.
Engagement of the TCR induces activation-induced cell death (AICD) of T cells that have been previously stimulated. However, a portion of these T cells can survive and undergo further activation. The molecular mechanism that decides whether a T cell will live or die after TCR re-engagement is unclear. We found that crosslinking of TCR in pre-activated primary mouse T cells led to the cleavage of anti-apoptotic Bcl-2 and Bcl-xL in dying cells. Cleavage-resistant Bcl-2 and Bcl-xL were more efficient than their wild type counterparts in the inhibition of apoptosis in primary mouse T cells and in the H9 T cell line after TCR crosslinking. In contrast, the surviving T cells after TCR re-engagement displayed up-regulation of Bcl-xL, while knockdown of Bcl-xL promoted AICD. This indicates that caspase-mediated cleavage of anti-apoptotic Bcl-2 or Bcl-xL facilitates AICD in T cells, whereas up-regulation of Bcl-xL promotes T cell survival and allows further T cell activation. Our data suggest that cleavage of anti-apoptotic Bcl-2 and Bcl-xL contributes to the decision between T cell activation and apoptosis after TCR re-engagement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.