In Alzheimer disease (AD) the microtubuleassociated protein tau is redistributed exponentially into paired helical filaments (PHFs) forming neurofibrillary tangles, which correlate with pyramidal cell destruction and dementia. Amorphous neuronal deposits and PHFs in AD are characterized by aggregation through the repeat domain and C-terminal truncation at Glu-391 by endogenous proteases.We show that a similar proteolytically stable complex can be generated in vitro following the self-aggregation of tau protein through a high-affinity binding site in the repeat domain. Once started, tau capture can be propagated by seeding the further accumulation of truncated tau in the presence of proteases. We have identified a nonneuroleptic phenothiazine previously used in man (methylene blue, MB), which reverses the proteolytic stability of protease-resistant PHFs by blocking the tau-tau binding interaction through the repeat domain. Although MB is inhibitory at a higher concentration than may be achieved clinically, the tau-tau binding assay was used to identify desmethyl derivatives of MB that have K; values in the nanomolar range. Neuroleptic phenothiazines are inactive. Tau aggregation inhibitors do not affect the tau-tubulin interaction, which also occurs through the repeat domain. Our findings demonstrate that biologically selective pharmaceutical agents could be developed to facilitate the proteolytic degradation of tau aggregates and prevent the further propagation of tau capture in AD.
Background Lecanemab (BAN2401), an IgG1 monoclonal antibody, preferentially targets soluble aggregated amyloid beta (Aβ), with activity across oligomers, protofibrils, and insoluble fibrils. BAN2401-G000-201, a randomized double-blind clinical trial, utilized a Bayesian design with response-adaptive randomization to assess 3 doses across 2 regimens of lecanemab versus placebo in early Alzheimer’s disease, mild cognitive impairment due to Alzheimer’s disease (AD) and mild AD dementia. Methods BAN2401-G000-201 aimed to establish the effective dose 90% (ED90), defined as the simplest dose that achieves ≥90% of the maximum treatment effect. The primary endpoint was Bayesian analysis of 12-month clinical change on the Alzheimer’s Disease Composite Score (ADCOMS) for the ED90 dose, which required an 80% probability of ≥25% clinical reduction in decline versus placebo. Key secondary endpoints included 18-month Bayesian and frequentist analyses of brain amyloid reduction using positron emission tomography; clinical decline on ADCOMS, Clinical Dementia Rating-Sum-of-Boxes (CDR-SB), and Alzheimer’s Disease Assessment Scale-Cognitive Subscale (ADAS-Cog14); changes in CSF core biomarkers; and total hippocampal volume (HV) using volumetric magnetic resonance imaging. Results A total of 854 randomized subjects were treated (lecanemab, 609; placebo, 245). At 12 months, the 10-mg/kg biweekly ED90 dose showed a 64% probability to be better than placebo by 25% on ADCOMS, which missed the 80% threshold for the primary outcome. At 18 months, 10-mg/kg biweekly lecanemab reduced brain amyloid (−0.306 SUVr units) while showing a drug-placebo difference in favor of active treatment by 27% and 30% on ADCOMS, 56% and 47% on ADAS-Cog14, and 33% and 26% on CDR-SB versus placebo according to Bayesian and frequentist analyses, respectively. CSF biomarkers were supportive of a treatment effect. Lecanemab was well-tolerated with 9.9% incidence of amyloid-related imaging abnormalities-edema/effusion at 10 mg/kg biweekly. Conclusions BAN2401-G000-201 did not meet the 12-month primary endpoint. However, prespecified 18-month Bayesian and frequentist analyses demonstrated reduction in brain amyloid accompanied by a consistent reduction of clinical decline across several clinical and biomarker endpoints. A phase 3 study (Clarity AD) in early Alzheimer’s disease is underway. Trial registration Clinical Trials.govNCT01767311.
Clinical observations support a central role of the dopamine system in restless legs syndrome (RLS) but previous imaging studies of striatal dopamine D2-receptors have yielded inconclusive results. Extrastriatal dopaminergic function has hitherto not been investigated. Sixteen RLS patients naïve to dopaminergic drugs and sixteen matched control subjects were examined with PET. [11C]Raclopride and [11C]FLB 457 were used to estimate D2-receptor availability in striatum and extrastriatal regions, respectively. Examinations were performed both in the morning (starting between 10:00 and 12:00 h) and evening (starting at 18:00 h). Measures were taken to monitor and control for head movement during data acquisition. In the striatum, patients had significantly higher [11C]raclopride binding potential (BP) values than controls. In extrastriatal regions, [11C]FLB 457 BP was higher in patients than controls, and in the regional analysis the difference was statistically significant in subregions of thalamus and the anterior cingulate cortex. The diurnal variability in BP with [11C]FLB 457 and [11C]raclopride was within the previously reported test-retest reproducibility for both radioligands. The study supports involvement of the dopamine system in both striatal and extrastriatal brain regions in the pathophysiology of RLS. The brain regions where differences in D2-receptor binding were shown are implicated in the regulation of affective and motivational aspects of sensory processing, suggesting a possible pathway for sensory symptoms in RLS. Increased D2-receptor availability in RLS may correspond to higher receptor densities or lower levels of endogenous dopamine. Both interpretations are consistent with the hypothesis of hypoactive dopaminergic neurotransmission in RLS, as increased receptor levels can be owing to receptor upregulation in response to low levels of endogenous dopamine. The results do not support variations in dopamine D2-receptor availability as a correlate to the diurnal rhythm of RLS symptoms.
BackgroundSeveral monoclonal antibodies for the treatment of Alzheimer’s disease (AD) have been in development over the last decade. BAN2401 is a monoclonal antibody that selectively binds soluble amyloid β (Aβ) protofibrils.MethodsHere we describe the first clinical study with BAN2401. Safety and tolerability were investigated in mild to moderate AD. A study design was used with staggered parallel single and multiple ascending doses, from 0.1 mg/kg as a single dose to 10 mg/kg biweekly for four months. The presence of amyloid related imaging abnormalities (ARIA, E for edema, H for hemorrhage) was assessed with magnetic resonance imaging (MRI). Cerebrospinal fluid (CSF) and plasma samples were analyzed to investigate pharmacokinetics (PK) and effects on biomarkers.ResultsThe incidence of ARIA-E/H on MRI was comparable to that of placebo. BAN2401 exposure was approximately dose proportional, with a serum terminal elimination half-life of ~7 days. Only a slight increase of plasma Aβ(1-40) was observed but there were no measurable effects of BAN2401 on CSF biomarkers. On the basis of these findings Phase 2b efficacy study has been initiated in early AD.ConclusionsBAN2401 was well-tolerated across all doses. The PK profile has guided us for selecting dose and dose regimens in the ongoing phase 2b study. There was no clear guidance for an effective dose based on biomarkers.Trial registration numberNCT01230853 ClinicalTrials.gov Registered October 27, 2010.Electronic supplementary materialThe online version of this article (doi:10.1186/s13195-016-0181-2) contains supplementary material, which is available to authorized users.
TRPV1 is a cation channel activated by a range of noxious stimuli and highly expressed in nociceptive fibres. TRPV1 receptors are involved in pain and sensitisation associated with tissue injury and inflammation; hence, TRPV1 antagonists are potentially useful for the treatment of such pain states. SB-705498 is a potent, selective and orally bioavailable TRPV1 antagonist with demonstrated efficacy in a number of preclinical pain models. In this first-time-into-human study, we have investigated the pharmacodynamic and antihyperalgesic activity of SB-705498. The compound was safe and well tolerated at single oral doses up to 400mg. In a cohort of 19 healthy volunteers, we used a randomised placebo-controlled single-blind cross-over design to assess the effects of SB-705498 (400mg) on heat-evoked pain and skin sensitisation induced by capsaicin or UVB irradiation. Compared with placebo, SB-705498 reduced the area of capsaicin-evoked flare (P=0.0047). The heat pain threshold on non-sensitised skin was elevated following SB-705498 (estimated difference from placebo [95% confidence intervals]: 1.3 degrees C [0.07,2.53], P=0.019). Following capsaicin sensitisation, the heat pain threshold and tolerance were similar between SB-705498 and placebo. However, SB-705498 increased heat pain tolerance at the site of UVB-evoked inflammation (estimated difference from placebo: 0.93 degrees C [0.25,1.6], P=0.0054). The magnitude of the pharmacodynamic effects of SB-705498 appeared to be related to plasma concentration. These results indicate that SB-705498, at a clinically safe and well-tolerated dose, has target-specific pharmacodynamic activity in humans. These data provide the first clinical evidence that a TRPV1 antagonist may alleviate pain and hyperalgesia associated with inflammation and tissue injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.