Halide perovskite‐based photovoltaic (PV) devices have recently emerged for low energy consumption electronic devices such as Internet of Things (IoT). In this work, an effective strategy to form a hole‐selective layer using phenethylammonium iodide (PEAI) salt is presented that demonstrates unprecedently high open‐circuit voltage of 0.9 V with 18 µW cm−2 under 200 lux (cool white light‐emitting diodes). An appropriate post‐deposited amount of PEAI (2 mg) strongly interacts with the perovskite surface forming a conformal coating of PEAI on the perovskite film surface, which improves the crystallinity and absorption of the film. Here, Kelvin probe force microscopy results indicate the diminished potential difference across the grain boundaries and grain interiors after the PEAI deposition, constructing an electrically and chemically homogeneous surface. Also, the surface becomes more p‐type with a downshift of a valence band maximum, confirmed by ultraviolet photoelectron spectroscopy measurement, facilitating the transport of holes to the hole transport layer (HTL). The hole‐selective layer‐deposited devices exhibit reduced hysteresis in light current density–voltage curves and maintain steadily high fill factor across the different light intensities (200–1000 lux). This work highlights the importance of the HTL/perovskite interface that prepares the indoor halide perovskite PV devices for powering IoT device.
Improvements in charge carrier transport and equivalent photoluminescence were obtained for CuInS2 nanoparticles with Ag-surface termination in photovoltaic devices.
A novel, camera-based method for direct implied open-circuit voltage (iV OC ) imaging via the use of a single bandpass filter (s-BPF) is developed for largearea photovoltaic solar cells and precursors. The photoluminescence (PL) emission is imaged using a narrow BPF with centre energy inside the highenergy tail of the PL emission, utilising the close-to-unity and nearly constant absorptivity of typical photovoltaic devices in this energy range. As a result, the exact value of the sample's absorptivity within the BPF transmission band is not required. The use of an s-BPF enables a fully contactless approach to calibrate the absolute PL photon flux for spectrally integrated detectors, including cameras. The method eliminates the need for knowledge of the imaging system spectral response. Through an appropriate choice of the BPF centre energy, a range of absorber compositions or a single absorber with different surface morphologies, such as planar and textured, can be imaged, all without the need for additional detection optics. The feasibility of this s-BPF method is first validated. The relative error in iV OC is determined to be ≤1.5%. The method is then demonstrated on device stacks with two different perovskite compositions commonly used in single-junction and monolithic tandem solar cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.