Summary of background data and objectives:
Operating theatres are typically the most resource-intensive area of a hospital, 3–6 times more energy-intensive than the rest of the hospital and a major contributor of waste. The primary objective of this systematic review was to evaluate existing literature calculating the carbon footprint of surgical operations, determining opportunities for improving the environmental impact of surgery.
Methods:
A systematic review was conducted in accordance with PRISMA guidelines. The Cochrane Database, Embase, Ovid MEDLINE, and PubMed were searched and inclusion criteria applied. The study endpoints were extracted and compared, with the risk of bias determined.
Results:
A total of 4604 records were identified, and 8 were eligible for inclusion. This review found that the carbon footprint of a single operation ranged 6–814 kg carbon dioxide equivalents. The studies found that major carbon hotspots within the examined operating theatres were electricity use, and procurement of consumables. It was possible to reduce the carbon footprint of surgery through improving energy-efficiency of theatres, using reusable or reprocessed surgical devices and streamlining processes. There were significant methodological limitations within included studies.
Conclusions:
Future research should focus on optimizing the carbon footprint of operating theatres through streamlining operations, expanding assessments to other surgical contexts, and determining ways to reduce the footprint through targeting carbon hotspots.
Climate change presents a global health threat. However, the provision of healthcare, including dialysis, is associated with greenhouse gas emissions. The aim of this study was to determine the carbon footprints of the differing modalities and treatment regimes used to deliver maintenance hemodialysis (HD), in order to inform carbon reduction strategies at the level of both individual treatments and HD programs. This was a component analysis study adhering to PAS2050. Emissions factors were applied to data that were collected for building energy use, travel and procurement. Thrice weekly in-center HD has a carbon footprint of 3.8 ton CO2 Eq per patient per year. The majority of emissions arise within the medical equipment (37%), energy use (21%), and patient travel (20%) sectors. The carbon footprint of providing home HD varies with the regime. For standard machines: 4 times weekly (4 days, 4.5 hours), 4.3 ton CO2 Eq; 5 times weekly (5 days, 4 hours), 5.1 ton CO2 Eq ; short daily (6 days, 2 hours), 5.2 ton CO2 Eq; nocturnal (3 nightly, 7 hours), 3.9 ton CO2 Eq; and nocturnal (6 nightly, 7 hours), 7.2 ton CO2 Eq. For NxStage equipment: short daily (5.5 days, 3 hours), 1.8 ton CO2 Eq; 6 nightly nocturnal (2.1 ton CO2 Eq). The carbon footprint of HD is influenced more by the frequency of treatments than by their duration. The anticipated rise in the prevalence of home HD patients, dialyzing more frequently and for longer than in-center patients, will increase the emissions associated with HD programs (despite reductions in patient travel emissions). Emerging technologies, such as NxStage, might offer a solution to this problem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.