Sixty children, ages 7-17 years, who fulfilled Diagnostic and Statistical Manual of Mental Disorders (4th ed.; American Psychiatric Association, 1994) diagnosis for various specific phobias were randomized to (a) 1-session exposure treatment alone, (b) 1-session treatment with a parent present, or (c) wait-list control group for 4 weeks. After the waiting period, the wait-list patients were rerandomized to the active treatments. The patients' phobias were assessed with behavioral approach tests (approach behavior, experienced anxiety, and physiological reactions), whereas general anxiety, depression, phobic tendencies, and anxiety sensitivity were assessed with self-report inventories. Assessments were done pre-, post-, and 1-year following treatment. Results showed that both treatment conditions did significantly better than the control condition, whereas the treatment groups did equally well on most measures, and the effects were maintained at follow-up. The implications of these results are discussed.
The Scandinavian approach is an effective combined treatment for respiratory distress syndrome (RDS) and prevention of bronchopulmonary dysplasia (BPD). It is composed of many individual parts.Of significant importance is the early treatment with nasal continuous positive airway pressure (nCPAP) and surfactant treatment. The approach may be supplemented with caffeine citrate and non-invasive positive pressure ventilation for apnoea. The low incidence of BPD seen as a consequence of the treatment strategy is mainly due to a reduced need for mechanical ventilation (MV).Conclusion: Early-postnatal treatment with nCPAP and surfactant decreases the severity and mortality of RDS and BPD. This is mainly due to a diminished use of MV in the first days of life.
Intratracheal administration of surfactant and inhaled nitric oxide (INO) have had variable effects in clinical trials on patients with acute respiratory distress syndrome (ARDS). We hypothesized that combined treatment with exogenous surfactant and INO may have effects in experimental ARDS. After intravenous infusion of oleic acid in adult rabbits and 4-6 h of ventilation, there was more than a 40% reduction in both dynamic compliance (Cdyn) of the respiratory system and functional residual capacity (FRC), a 50% increment of respiratory resistance (Rrs), a 70% reduction in PaO2 /FIO2, and an increase in intrapulmonary shunting (Q S/Q T) from 4.4 to 33.5%. The animals were then allocated to groups receiving (1) neither surfactant nor INO (control), (2) 100 mg/kg of surfactant (S) administered intratracheally, (3) 20 ppm INO (NO), or (4) 100 mg/kg of surfactant and 20 ppm INO (SNO), and subsequently ventilated for 6 h. After the period of ventilation, the animal lungs were used for analysis of disaturated phosphatidylcholine (DSPC) and total proteins (TP) in bronchoalveolar lavage fluid (BALF), and for determination of alveolar volume density (VV). The animals in the control group had the lowest survival rate, and no improvement in lung mechanics and blood oxygenation, whereas those in the S group had a modest but statistically significant improvement in Cdyn, Rrs, PaO2 and FRC, reduced Q S/Q T, lowered minimum surface tension (gammamin) of BALF, and increased DSPC/ TP and alveolar VV. The NO group had increased PaO2 and reduced Q S/Q T. The SNO group showed improved Cdyn, Rrs, FRC, DSPC/TP, alveolar VV, and gammamin of BALF comparable to the S group, but there was a further increase in survival rate and PaO2, and additional reduction in Q S/Q T and TP in BALF. These results indicate that, in this animal model of ARDS, a combination of surfactant therapy and INO is more effective than either treatment alone.
Exposure to 40 p.p.m. iNO in healthy anaesthetized piglets has a transient natriuretic effect that disappears after 12 h. We also found evidence of renal tubular apoptosis promotion after 30 h of iNO.
BackgroundPathological evidence suggests that COVID-19 pulmonary infection involves both alveolar damage (causing shunt) and diffuse micro-vascular thrombus formation (causing alveolar dead space). We propose that measuring respiratory gas exchange enables detection and quantification of these abnormalities. We aimed to measure shunt and alveolar deadspace in moderate COVID-19 during acute illness and recovery.MethodsWe studied 30 patients (22 males, age: 49.9±13.5 years) 3–15 days from symptom onset and again during recovery, 55±10 days later (n=17). Arterial blood (breathing ambient air) was collected while exhaled O2 and CO2 concentrations were measured, yielding alveolar-arterial differences for each gas (AaPO2, aAPCO2) from which shunt and alveolar dead space were computed.Measurements and Main ResultsFor acute COVID-19 patients, group mean (range) for AaPO2 was 41.4 (−3.5 to 69.3) mmHg; aAPCO2 was 6.0 (−2.3 to 13.4) mmHg. Both shunt (% cardiac output) at 10.4 (0 to 22.0)%, and alveolar dead space (% tidal volume) at 14.9 (0 to 32.3)% were elevated (normal: <5% and <10%, respectively), but not correlated (p=0.27). At recovery, shunt was 2.4 (0 to 6.1)% and alveolar dead space was 8.5 (0 to 22.4)% (both p<0.05 versus acute); shunt was marginally elevated for 2 patients, however, 5 (30%) had elevated alveolar dead space.ConclusionsWe speculate impaired pulmonary gas exchange in early COVID-19 pneumonitis arises from two concurrent, independent and variable processes (alveolar filling and pulmonary vascular obstruction). For most patients these resolve within weeks, however, high alveolar dead space in ∼30% of recovered patients suggests persistent pulmonary vascular pathology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.