In today's interconnected digital world, targeted attacks have become a serious threat to conventional computer systems and critical infrastructure alike. Many researchers contribute to the fight against network intrusions or malicious software by proposing novel detection systems or analysis methods. However, few of these solutions have a particular focus on Advanced Persistent Threats or similarly sophisticated multi-stage attacks. This turns finding domainappropriate methodologies or developing new approaches into a major research challenge. To overcome these obstacles, we present a structured review of semantics-aware works that have a high potential for contributing to the analysis or detection of targeted attacks. We introduce a detailed literature evaluation schema in addition to a highly granular model for article categorization. Out of 123 identified papers, 60 were found to be relevant in the context of this study. The selected articles are comprehensively reviewed and assessed in accordance to Kitchenham's guidelines for systematic literature reviews. In conclusion, we combine new insights and the status quo of current research into the concept of an ideal systemic approach capable of semantically processing and evaluating information from different observation points.
Behavior-based analysis of emerging malware families involves finding suspicious patterns in large collections of execution traces. This activity cannot be automated for previously unknown malware families and thus malware analysts would benefit greatly from integrating visual analytics methods in their process. However existing approaches are limited to fairly static representations of data and there is no systematic characterization and abstraction of this problem domain. Therefore we performed a systematic literature study, conducted a focus group as well as semi-structured interviews with 10 malware analysts to elicit a problem abstraction along the lines of data, users, and tasks. The requirements emerging from this work can serve as basis for future design proposals to visual analytics-supported malware pattern analysis.
No abstract
Targeted attacks on IT systems are a rising threat against the confidentiality, integrity, and availability of critical information and infrastructures. With the rising prominence of advanced persistent threats (APTs), identifying and understanding such attacks has become increasingly important. Current signaturebased systems are heavily reliant on fixed patterns that struggle with unknown or evasive applications, while behavior-based solutions usually leave most of the interpretative work to a human analyst. In this article we propose AIDIS, an Advanced Intrusion Detection and Interpretation System capable to explain anomalous behavior within a network-enabled user session by considering kernel event anomalies identified through their deviation from a set of baseline process graphs. For this purpose we adapt star structures, a bipartite representation used to approximate the edit distance between two graphs. Baseline templates are generated automatically and adapt to the nature of the respective operating system process. We prototypically implemented smart anomaly classification through a set of competency questions applied to graph template deviations and evaluated the approach using both Random Forest and linear kernel support vector machines. The determined attack classes are ultimately mapped to a dedicated APT attacker/defender meta model that considers actions, actors, as well as assets and mitigating controls, thereby enabling decision support and contextual interpretation of ongoing attacks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.