Across the distances spanned by large rivers, there are important differences in catchment characteristics, tributary inputs, and river morphology that may cause longitudinal changes in nutrient, chlorophyll, and suspended solids concentrations. We investigated longitudinal and seasonal patterns in the Upper Mississippi River (UMR) using long-term data (1994)(1995)(1996)(1997)(1998)(1999)(2000)(2001)(2002)(2003)(2004)(2005) from five study reaches that spanned 1300 km of the UMR. Lake Pepin, a natural lake in the most upstream study reach, had a clear effect on suspended material in the river. Suspended solids and total phosphorus (TP) concentrations were substantially lower downstream of the lake and percent organic material (OM%) in suspension was higher. Below L. Pepin, mean total and organic suspended solids (TSS, OSS) and TP increased downriver and exhibited approximately log-linear relationships with catchment area, whereas OM% declined substantially downriver. Despite the downriver increase in TSS and OSS, concentrations similar to those above L. Pepin do not occur until *370 km downriver indicating the extent of the influence of L. Pepin on the UMR. Chlorophyll concentrations were lower in the most downstream study reach, likely reflecting the shorter residence time and poor light climate, but there was not a consistent longitudinal decline in chlorophyll across the study reaches. Dissolved silica (DSi), DSi:TN, and DSi:TP declined downriver suggesting that DSi uptake and sedimentation by river phytoplankton may be reducing DSi transport in the river, and indicating that the eutrophication of the river may contribute to a reduction of DSi export to the Gulf of Mexico.
This study used stratified random sampling to examine the spatial and temporal distribution of zooplankton communities in a large floodplain river (Mississippi River, USA). Potential mechanisms controlling zooplankton abundance and community structure were considered. Main channel and backwater habitats included in this study differed between a turbid upper pool reach where aquatic macrophytes were sparse and a lower pool reach which was considerably less turbid and had extensive aquatic macrophyte coverage. Samples were collected monthly during the summer over a 2-year period and multivariate analysis was used to examine the spatial and temporal distribution of zooplankton. Significant differences were found in zooplankton density and community composition among habitats and reaches within the pool. Rotifers were the dominant taxa and seasonality was pronounced, with peak densities often occurring in late-spring.Community structure varied by habitat and reach, which suggests that water quality, physical habitat characteristics, presence of aquatic macrophytes, and zooplankton sources can all influence the zooplankton communities of the Upper Mississippi River. Characterization of the zooplankton communities provides a basis for understanding changes in the river ecosystem and examination of zooplankton communities among habitats provides insight into the mechanisms affecting zooplankton dynamics.
Zooplankton communities in riverine systems are typically thought to be driven by abiotic forces. However, recent studies have shown that biological controls are capable of structuring these communities in large rivers and may become more influential as a river system becomes more lentic during low discharge. This study uses a long-term data set to examine several environmental variables as potential drivers of zooplankton community structure in a natural riverine lake. We hypothesized that water residence time would be the most important variable influencing zooplankton community structure. To test this, we used non-metric multidimensional scaling and correlation analysis to examine spatial and temporal patterns in zooplankton community structure. Analysis revealed that water residence time was the single most important environmental variable driving zooplankton abundance and community structure. The relationship between water residence time and taxa groups varied indicating that other taxa specific drivers had some influence on zooplankton community structure as well. Continued insight into the mechanisms driving zooplankton community structure will provide a basis for understanding zooplankton dynamics in large river ecosystems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.