The real time dynamics of vanilloid-induced cytotoxicity and the specific deletion of nociceptive neurons expressing the wild-type vanilloid receptor (VR1) were investigated. VR1 was C-terminally tagged with either the 27-kDa enhanced green fluorescent protein (eGFP) or a 12-amino acid ⑀-epitope. Upon exposure to resiniferatoxin, VR1eGFP-or VR1⑀-expressing cells exhibited pharmacological responses similar to those of cells expressing the untagged VR1. Within seconds of vanilloid exposure, the intracellular free calcium ([Ca 2؉ ] i ) was elevated in cells expressing VR1. A functional pool of VR1 also was localized to the endoplasmic reticulum that, in the absence of extracellular calcium, also was capable of releasing calcium upon agonist treatment. Confocal imaging disclosed that resiniferatoxin treatment induced vesiculation of the mitochondria and the endoplasmic reticulum (ϳ1 min), nuclear membrane disruption (5-10 min), and cell lysis (1-2 h). Nociceptive primary sensory neurons endogenously express VR1, and resiniferatoxin treatment induced a sudden increase in [Ca 2؉ ] i and mitochondrial disruption which was cell-selective, as glia and non-VR1-expressing neurons were unaffected. Early hallmarks of cytotoxicity were followed by specific deletion of VR1-expressing cells. These data demonstrate that vanilloids disrupt vital organelles within the cell body and, if administered to sensory ganglia, may be employed to rapidly and selectively delete nociceptive neurons.
Orofacial pain has been well-characterized clinically, but evaluation of orofacial pain in animals has not kept pace. The objective of this study was to describe behavioral responses to facial thermal stimulation and inflammation with/without an analgesic using a novel operant paradigm. Animals were trained to voluntarily place their face against a stimulus thermode (37.7-57.2 degrees C) providing access to positive reinforcement. These contingencies present a conflict between positive reward and tolerance for nociceptive stimulation. Inflammation was induced and morphine was provided as an analgesic in a subset of animals. Six outcome measures were determined: reward intake, reward licking contacts, stimulus facial contacts, facial contact duration, ratio of reward/stimulus contacts, and ratio of facial contact duration/event. Animals displayed aversive behaviors to the higher temperatures, denoted by a significant decrease in reward intake, total facial contact duration, and reward licking events. The number of facial contacts increased with increasing temperature, replacing long drinking bouts with more frequent short drinks, as reflected by a low ratio of facial contact duration/event. The number of reward licking/facial contact events was significantly decreased as the thermal stimulus intensity increased, providing another pain index derived from this operant method. These outcomes were significantly affected in the direction of increased nociception following inflammation, and these indices of hyperalgesia were reversed with morphine administration. These data reflect an orofacial pain behavior profile that was based on an animal's responses in an operant escape paradigm. This technique allows evaluation of nociceptive processing and modulation throughout the neuraxis.
Although there was no change in the staining intensity for RAGE between both groups, the increase in the mRNA for RAGE in the type 2 diabetes gingival epithelium may indicate a possible involvement of this receptor in the periodontal destruction in type 2 diabetes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.