Software agents that autonomously act and interact to achieve their design objectives are increasingly being developed for a range of e-commerce applications. In this context, automated negotiation is a central concern since it is the de facto means of establishing contracts for goods or services between the agents. Now, in many cases these contracts consist of multiple issues (e.g. price, time of delivery, quantity, quality) which makes the negotiation more complex than when dealing with just price. In particular, effective and efficient multi-issue negotiation requires an agent to have some indication of its opponent's preferences over these issues. However, in competitive domains, such as e-commerce, an agent will not reveal this information and so the best that can be achieved is to learn some approximation of it through the negotiation exchanges. To this end, we explore and evaluate the use of kernel density estimation for this purpose. Specifically, we couch our work in the context of making negotiation trade-offs and show how our approach can make the negotiation outcome more efficient for both participants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.