Clones of complementary DNA encoding the human lymphokine known as granulocyte-macrophage colony-stimulating factor (GM-CSF) were isolated by means of a mammalian cell (monkey COS cell) expression screening system. One of these clones was used to produce recombinant GM-CSF in mammalian cells. The recombinant hematopoietin was similar to the natural product that was purified to apparent homogeneity from medium conditioned by a human T-cell line. The human T-cell GM-CSF was found to be 60 percent homologous with the GM-CSF recently cloned from murine lung messenger RNA.
Human sequence monoclonal antibodies, which in theory combine high specificity with low immunogenicity, represent a class of potential therapeutic agents. But nearly 20 years after Köhler and Milstein first developed methods for obtaining mouse antibodies, no comparable technology exists for reliably obtaining high-affinity human antibodies directed against selected targets. Thus, rodent antibodies, and in vitro modified derivatives of rodent antibodies, are still being used and tested in the clinic. The rodent system has certain clear advantages; mice are easy to immunize, are not tolerant to most human antigens, and their B cells form stable hybridoma cell lines. To exploit these advantages, we have developed transgenic mice that express human IgM, IgG and Ig kappa in the absence of mouse IgM or Ig kappa. We report here that these mice contain human sequence transgenes that undergo V(D)J joining, heavy-chain class switching, and somatic mutation to generate a repertoire of human sequence immunoglobulins. They are also homozygous for targeted mutations that disrupt V(D)J rearrangement at the endogenous heavy- and kappa light-chain loci. We have immunized the mice with human proteins and isolated hybridomas secreting human IgG kappa antigen-specific antibodies.
The tubular gland of the chicken oviduct is an attractive system for protein expression as large quantities of proteins are deposited in the egg, the production of eggs is easily scalable and good manufacturing practices for therapeutics from eggs have been established. Here we examined the ability of upstream and downstream DNA sequences of ovalbumin, a protein produced exclusively in very high quantities in chicken egg white, to drive tissue-specific expression of human mAb in chicken eggs. To accommodate these large regulatory regions, we established and transfected lines of chicken embryonic stem (cES) cells and formed chimeras that express mAb from cES cell-derived tubular gland cells. Eggs from high-grade chimeras contained up to 3 mg of mAb that possesses enhanced antibody-dependent cellular cytotoxicity (ADCC), nonantigenic glycosylation, acceptable half-life, excellent antigen recognition and good rates of internalization.
Human immunoglobulin transgenic mice provide a method of obtaining human monoclonal antibodies (Mabs) using conventional hybridoma technology. We describe a novel strain of human immunoglobulin transgenic mice and the use of this strain to generate multiple high-avidity human sequence IgG kappa Mabs directed against a human antigen. The light chain transgene is derived in part from a yeast artificial chromosome clone that includes nearly half of the germline human V kappa region. In addition, the heavy-chain transgene encodes both human mu and human gamma 1 constant regions, the latter of which is expressed via intratransgene class switching. We have used these animals to isolate human IgG kappa Mabs that are specific for the human T-cell marker CD4, have high binding avidities, and are immunosuppressive in vitro. The human Mab-secreting hybridomas display properties similar to those of wild-type mice including stability, growth, and secretion levels. Mabs with four distinct specificities were derived from a single transgenic mouse, consistent with an extensive diversity in the primary repertoire encoded by the transgenes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.