The human genome contains many dispersed tandem-repetitive 'minisatellite' regions detected via a shared 10-15-base pair 'core' sequence similar to the generalized recombination signal (chi) of Escherichia coli. Many minisatellites are highly polymorphic due to allelic variation in repeat copy number in the minisatellite. A probe based on a tandem-repeat of the core sequence can detect many highly variable loci simultaneously and can provide an individual-specific DNA 'fingerprint' of general use in human genetic analysis.
Simple tandem-repetitive regions of DNA (or 'minisatellites') which are dispersed in the human genome frequently show substantial length polymorphism arising from unequal exchanges which alter the number of short tandem repeats in a minisatellite. We have shown previously that the repeat elements in a subset of human minisatellites share a common 10-15-base-pair (bp) 'core' sequence which might act as a recombination signal in the generation of these hypervariable regions. A hybridization probe consisting of the core repeated in tandem can detect many highly polymorphic minisatellites simultaneously to provide a set of genetic markers of general use in human linkage analysis. We now show that other variant (core)n probes can detect additional sets of hypervariable minisatellites to produce somatically stable DNA 'fingerprints' which are completely specific to an individual (or to his or her identical twin) and can be applied directly to problems of human identification, including parenthood testing.
Tandem-repetitive minisatellite regions in vertebrate DNA frequently show substantial allelic variation in the number of repeat units. This variation is thought to arise through processes such as unequal crossover or replication slippage. We show here that the spontaneous mutation rate to new length alleles at extremely variable human minisatellites is sufficiently high to be directly measurable in human pedigrees. The mutation rate at different loci increases with variability in accord with the neutral mutation/random drift hypothesis, and rises to 5% per gamete for the most unstable human minisatellite isolated. Mutations are sporadic, occur with similar frequencies in sperm and oocytes, and can involve the gain or loss of substantial numbers of repeat units, consistent with length changes arising primarily by unequal exchange at meiosis. Germline instability must therefore be taken into account when using hypervariable loci as genetic markers, particularly in pedigree analysis and parenthood testing.
Five of the most variable loci detected in human DNA by hybridization with DNA fingerprint probes have been cloned and characterized. Each locus consists of a tandem-repetitive minisatellite, with repeat units ranging in length from 9 to 45 base pairs depending on the locus. All of these cloned minisatellites act as locus-specific hybridization probes, and detect extremely variable Mendelian loci with heterozygosities ranging from 90 to 99%. These five hypervariable loci, together with a previously-isolated minisatellite designated p lambda g3, are dispersed over four autosomes (chromosomes 1, 5, 7 and 12). Syntenic pairs on chromosomes 1 and 7 show no detectable pair-wise linkage, and thus these hypervariable loci show no evidence of clustering within the genome and should provide valuable markers for mapping inherited disease. The locus-specific minisatellites act as very sensitive hybridization probes, and can be pooled to detect several hypervariable loci simultaneously. The applications of these probes in individual identification, paternity testing and analysis of cell chimaerism are discussed, and are illustrated by an analysis of forensic specimens from two victims who had been sexually assaulted and murdered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.