Tandem-repetitive minisatellite regions in vertebrate DNA frequently show substantial allelic variation in the number of repeat units. This variation is thought to arise through processes such as unequal crossover or replication slippage. We show here that the spontaneous mutation rate to new length alleles at extremely variable human minisatellites is sufficiently high to be directly measurable in human pedigrees. The mutation rate at different loci increases with variability in accord with the neutral mutation/random drift hypothesis, and rises to 5% per gamete for the most unstable human minisatellite isolated. Mutations are sporadic, occur with similar frequencies in sperm and oocytes, and can involve the gain or loss of substantial numbers of repeat units, consistent with length changes arising primarily by unequal exchange at meiosis. Germline instability must therefore be taken into account when using hypervariable loci as genetic markers, particularly in pedigree analysis and parenthood testing.
Linear chromosomes are stabilized by telomeres, but the presence of short dysfunctional telomeres triggers cellular senescence in human somatic tissues, thus contributing to ageing. Approximately 1% of the population inherits a chromosomally integrated copy of human herpesvirus 6 (CI-HHV-6), but the consequences of integration for the virus and for the telomere with the insertion are unknown. Here we show that the telomere on the distal end of the integrated virus is frequently the shortest measured in somatic cells but not the germline. The telomere carrying the CI-HHV-6 is also prone to truncations that result in the formation of a short telomere at a novel location within the viral genome. We detected extra-chromosomal circular HHV-6 molecules, some surprisingly comprising the entire viral genome with a single fully reconstituted direct repeat region (DR) with both terminal cleavage and packaging elements (PAC1 and PAC2). Truncated CI-HHV-6 and extra-chromosomal circular molecules are likely reciprocal products that arise through excision of a telomere-loop (t-loop) formed within the CI-HHV-6 genome. In summary, we show that the CI-HHV-6 genome disrupts stability of the associated telomere and this facilitates the release of viral sequences as circular molecules, some of which have the potential to become fully functioning viruses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.