SUMMARYThe material point method (MPM) has demonstrated itself as a computationally effective particle method for solving solid mechanics problems involving large deformations and/or fragmentation of structures, which are sometimes problematic for finite element methods (FEMs). However, similar to most methods that employ mixed Lagrangian (particle) and Eulerian strategies, analysis of the method is not straightforward. The lack of an analysis framework for MPM, as is found in FEMs, makes it challenging to explain anomalies found in its employment and makes it difficult to propose methodology improvements with predictable outcomes.In this paper we present an analysis of the quadrature errors found in the computation of (material) internal force in MPM and use this analysis to direct proposed improvements. In particular, we demonstrate that lack of regularity in the grid functions used for representing the solution to the equations of motion can hamper spatial convergence of the method. We propose the use of a quadratic B-spline basis for representing solutions on the grid, and we demonstrate computationally and explain theoretically why such a small change can have a significant impact on the reduction in the internal force quadrature error (and corresponding 'grid crossing error') often experienced when using MPM.
Hybridization through the border of the elements (hybrid unknowns) combined with a Schur complement procedure (often called static condensation in the context of continuous Galerkin linear elasticity computations) has in various forms been advocated in the mathematical and engineering literature as a means of accomplishing domain decomposition, of obtaining increased accuracy and convergence results, and of algorithm optimization. Recent work on the hybridization of mixed methods, and in particular of the discontinuous Galerkin (DG) method, holds the promise of capitalizing on the three aforementioned properties; in particular, of generating a numerical scheme that is discontinuous in both the primary and flux variables, is locally conservative, and is computationally competitive with traditional continuous Galerkin (CG) approaches. In this paper we present both implementation and optimization strategies for the Hybridizable Discontinuous Galerkin (HDG) method applied to two dimensional elliptic operators. We implement our HDG approach within a spectral/hp element framework so that comparisons can be done between HDG and the traditional CG approach.We demonstrate that the HDG approach generates a global trace space system for the unknown that although larger in rank than the traditional static condensation system in CG, has significantly smaller bandwidth at moderate polynomial orders. We show that if one ignores set-up costs, above approximately fourth-degree polynomial expansions on triangles and quadrilaterals the HDG method can be made to be as efficient as the CG approach, making it competitive for time-dependent problems even before taking into consideration other properties of DG schemes such as their superconvergence properties and their ability to handle hp-adaptivity.
Abstract-We present results from a user study that compared six visualization methods for two-dimensional vector data. Users performed three simple but representative tasks using visualizations from each method: 1) locating all critical points in an image, 2) identifying critical point types, and 3) advecting a particle. Visualization methods included two that used different spatial distributions of short arrow icons, two that used different distributions of integral curves, one that used wedges located to suggest flow lines, and line-integral convolution (LIC). Results show different strengths and weaknesses for each method. We found that users performed these tasks better with methods that: 1) showed the sign of vectors within the vector field, 2) visually represented integral curves, and 3) visually represented the locations of critical points. Expert user performance was not statistically different from nonexpert user performance. We used several methods to analyze the data including omnibus analysis of variance, pairwise t-tests, and graphical analysis using inferential confidence intervals. We concluded that using the inferential confidence intervals for displaying the overall pattern of results for each task measure and for performing subsequent pairwise comparisons of the condition means was the best method for analyzing the data in this study. These results provide quantitative support for some of the anecdotal evidence concerning visualization methods. The tasks and testing framework also provide a basis for comparing other visualization methods, for creating more effective methods and for defining additional tasks to further understand the tradeoffs among the methods. In the future, we also envision extending this work to more ambitious comparisons, such as evaluating two-dimensional vectors on two-dimensional surfaces embedded in three-dimensional space and defining analogous tasks for three-dimensional visualization methods.
We present de-aliasing rules to be used when evaluating non-linear terms with polynomial spectral methods on nonuniform grids analogous to the de-aliasing rules used in Fourier spectral methods. They are based upon the idea of super-collocation followed by a Galerkin projection of the non-linear terms. We demonstrate through numerical simulation that both accuracy and stability can be greatly enhanced through the use of this approach. We begin by deriving from the numerical quadrature rules used by Galerkin-type projection methods the number of quadrature points and weights needed for quadratic and cubic non-linearities. We then present a systematic study of the effects of supercollocation when using both a continuous Galerkin and a discontinuous Galerkin method to solve the one-dimensional viscous Burgers equation. We conclude by examining three direct numerical simulation flow examples: incompressible turbulent flow in a triangular duct, incompressible turbulent flow in a channel at Re s ¼ 395, and compressible flow past a pitching airfoil at Re ¼ 45,000.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.