Electrical membrane potentials, oscillations, and action potentials are observed in proteinoid microspheres impaled with (3 M KC1) microelectrodes. Although effects are of greater magnitude when the vesicles contain glycerol and natural or synthetic lecithin, the results in the purely synthetic thermal protein structures are substantial, attaining 20 mV amplitude in some cases. The results add the property of electrical potential to the other known properties of proteinoid microspheres, in their role as models for protocells.
The experimental proteinoid model includes new results indicating that polymers sufficiently rich in basic amino acid catalyze the synthesis of peptides from ATP and amino acids and of oligonucleotides from ATP. The need for simulation syntheses of amino acids yielding significant proportions of basic amino acids is now in focus. The modeled simultaneous protocellular synthesis of peptides and polynucleotides is part of a more comprehensive proposal for the origin of the coded genetic mechanism. The finding of membrane and action potentials in proteinoid microspheres, with or without added lecithin, is reported. The crucial nature of a nonrandom matrix for protocells is developed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.