Collaborative Beamforming (CBF) is an essential tool towards increasing transmission range in Wireless Sensor Networks (WSNs). Owing to the random and complex nature of WSNs, development and use of improved metaheuristic algorithms in CBF is of essence. Particle Swarm Optimization (PSO) algorithm is a good candidate for use in CBF owing to its simplicity and low computation complexity. However, the basic PSO algorithm suffers from premature convergence particularly in highly multimodal functions (typical of CBF). This paper delves into the development and application of an improved Particle Swarm Optimization (PSO) algorithm in CBF. A new fuzzy-logic based confidence and inertia weight parameters adaptation scheme has been developed with an aim of enhancing exploration and exploitation capabilities of the PSO algorithm. Normalized particle quality and iteration count have been used as the inputs to the designed fuzzy-logic inference system. The fuzzy logic based parameters adaptation scheme has been implemented in the form of a lookup table to minimize "on-line" computation complexity. Furthermore, a particle culling/ re-initialization procedure is utilized at half the number of maximum iterations to enhance overall swarm diversity. The modified PSO algorithm has been christened Culled Fuzzy Adaptive Particle Swarm Optimization (CFAPSO) algorithm. The developed CFAPSO algorithm is noted to outperform other metaheuristic algorithms in a statistical performance analysis procedure (on the basis of a set of standard unimodal and multimodal functions). Upon application to CBF, the CFAPSO algorithm is found to generate a beamsteering outcome statistically identical to that of conventional beamsteering.
Null steering is essential in collaborative beamforming (CB) in wireless sensor networks (WSNs) to ensure minimal radiation power and interference in the direction of unintended receivers. Current research in null steering in CB in WSNs is mainly from the perspective of planar arrangements of sensor nodes and sink(s). Furthermore, there is no research dedicated to the formation of multiple wide nulls during CB in 3-dimension WSNs. Wide nulls are ideal in scenarios featuring mobile unintended sink(s). A new multiple and wide null steering scheme applicable to CB in WSNs is presented in this work (from the perspective of a 3-dimensional random arrangement of static sensor nodes). It is assumed that desired nulling directions are implicitly known at a CB cluster head. A particle swarm optimization (PSO) algorithm variant is applied in concurrent node transmit amplitude and phase perturbation with an aim of achieving beam steering alongside multiple and wide null steering. The performance of the proposed null steering scheme is validated against a basic null steering approach (with reference to current literature). Furthermore, a comparative null depth, width, and nulling accuracy analysis are done upon varying the count of collaborating nodes and the collaborating cluster radius. An increase in the number of collaborating nodes is found to increase nulling depth at an exponentially decaying rate. An increase in the collaborating nodes’ cluster radius yields a reduction in null width. The contributions of this work to the existing literature are as follows: (i) the design and investigation of a null steering scheme from the perspective of a 3-dimension random arrangement of sensor nodes; (ii) the design of a concurrent beam steering and multiple wide null steering scheme on the basis of concurrent node transmit amplitude and phase perturbation whilst ensuring null depth uniformity; (iii) a statistical analysis of the impact of a count of collaborating nodes and collaborating cluster radius on nulling performance; (iv) investigation of capacity improvement at unintended receivers upon null steering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.