An important topic of global concern is the likely reduction of maize production in response to climate change in association with increased frequency and intensity of extreme weather events, which threatens food security. We quantified the response of maize yield to projected climate changes in three main maize growing areas of South Africa (Bloemfontein, Lichtenburg and Nelspruit) using two crop modelling solutions: existing (EMS) and modified (MMS) CropSyst. The MMS considers explicitly the impact of extreme heat and drought. Both solutions were run with climate data generated from two radiative forcing scenarios using six general circulation models and three time horizons representing baseline (1990-2020), near future (2021-2050) and far future (2051-2080) time periods. Reduced yields were projected with both modelling solutions especially under far future time period. Simulated maize yield using EMS with high radiative forcing for far future decreased (compared with the simulated baseline for EMS) by 30%, 25.9% and 18.3% at Bloemfontein, Lichtenburg and Nelspruit, respectively. Simulated grain yield with MMS showed reductions of 27.6%, 24.3% and 18.7%, respectively (compared with the simulated baseline for MMS). Grain yield differences between the EMS and MMS ranged between 9 and 21%. This difference showed an increasing trend as time progressed from the baseline to the far future and varied across locations. Accounting explicitly for the impact of extreme weather events (MMS) resulted in lower simulated yields compared with the model without (EMS). Findings from this study warrant the need for location-specific model simulation using MMS-type models to improve crop yield predictions under climate change for better food security planning and policy formulation.
This study assessed two versions of the crop model CropSyst (i.e. EMS, existing; MMS, modified) for their ability to simulate maize (Zea mays L.) yield in South Africa. MMS algorithms explicitly account for the impact of extreme weather events (droughts, heat waves, cold shocks, frost) on leaf development and yield formation. The case study of this research was at an experimental station near Johannesburg where both versions of the model were calibrated and validated by using field data collected from 2004 to 2008. The comparison of EMS and MMS showed considerable difference between the two model versions during extreme drought and heat events. MMS improved grain-yield prediction by ~30% compared with EMS, demonstrating a better ability to capture the behaviour of stressed crops under a range of conditions. MMS also showed a greater variability in response when both versions were forced with scenarios of projected climate change, with increased severity of drought and increased temperature conditions at the horizons 2030 and 2050, which could drive decreased maize yield. Yield was even lower with MMS (8 v. 11 t ha–1 for EMS) at the horizon 2050, relative to the baseline scenario (~13 t ha–1 at the horizon 2000). Modelling solutions accounting for the impact of extreme weather events can be seen as a promising tool for supporting agricultural management strategies and policy decisions in South Africa and globally.
The prevalence of extreme drought and flooding is posing a threat to the food security of Sub-Saharan African countries. There are national and international calls for actions to investigate the level of resilience of existing crop cultivars to multiple abiotic stress conditions. A two-year study was carried out in South Africa to determine growth, development, yield, yield components, and physiological responses of two contrasting maize cultivars—PAN 413 (drought tolerant) and PAN 6Q-245 (drought intolerant) under drought and flooding. The drought effect on grain yield was more pronounced from mid-vegetative to tasselling stages, regardless of the cultivar with yields deviating from the control by 53–58% (2015/2016) and 34–42% (2016/2017). The effect of flooding on grain yield was pronounced at the early vegetative stage for both cultivars, with yield reductions ranging between 26–30% (2015/2016) and 15–21% (2016/2017). Results from the study indicated that existing maize cultivars (drought tolerant and drought intolerant) are both prone to likely extreme drought events experienced during the tasselling stage. Results also showed that both cultivars are prone to probable flooding events before the tasselling stage. It is recommended that plant breeders’ efforts be directed to developing maize cultivars with multiple stress tolerances.
South African soils generally lack native Bradyrhizobium strains that nodulate and fix atmospheric nitrogen (N2) in soybeans (Glycine max L.). It is therefore very important to inoculate soybeans with products that contain effective Bradyrhizobium strains as active ingredients. In this study, a field experiment was conducted on two bioclimatic zones in South Africa during the 2019/2020 season to assess the effect of Bradyrhizobium japonicum strain WB74 inoculant formulation on nitrogen fixation, growth and yield improvement in soybeans. The first bioclimatic zone was characterized by a sandy clay loam soil, whereas the second bioclimatic zone has a sandy loam soil. The results showed that inoculation of soybeans with both peat and liquid formulations of Bradyrhizobium japonicum WB74 increased nitrogen uptake, which resulted in yield increase. The amount of N fixed was measured as 15N isotopes and increased with all treatments compared to the uninoculated control in both liquid and peat inoculant formulations. In bioclimatic zone A, slightly better results were obtained using the liquid formulation (1.79 t ha−1 for liquid compared to 1.75 t ha−1 for peat treatments), while peat formulations performed better in bioclimatic zone B (1.75 t ha−1 for peat compared to 1.71 t ha−1 for liquid treatments). In both areas higher yields were obtained with the formulations used in this study compared to the registered standards (treatment T3). The findings in this study provide vital information in the development and application of formulated microbial inoculants for sustainable agriculture in South Africa.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.