Within cancer research, phage display libraries have been widely used for the identification of tumor targeting peptides and antibodies. Additionally, phages are known to be highly immunogenic; therefore we evaluated the immunotherapeutic potential of tumor specific phages to treat established solid tumors in a mouse model of melanoma. We developed two tumor specific phages, one derived from a peptide phage display library and one Fab expressing phage with known specificity, for the treatment of mice bearing palpable B16-F10 or B16/A2K(b) tumors. Therapy in B16-F10 tumor bearing mice with tumor specific phages was superior to treatment with non-tumor specific phages and lead to delayed tumor growth and increased survival. In B16/A2K(b )tumor bearing mice, therapy with tumor specific phages resulted in complete tumor regression and long-term survival in 50% of the mice. Histological analysis of tumors undergoing treatment with tumor specific phages revealed that phage administration induced a massive infiltration of polymorphonuclear neutrophils. Furthermore, phages induced secretion of IL-12 (p70) and IFN-gamma as measured in mouse splenocyte culture supernatants. These results demonstrate a novel, immunotherapeutic cancer treatment showing that tumor specific phages can promote regression of established tumors by recruitment of inflammatory cells and induction of Th1 cytokines.
The B16-F10 mouse model of melanoma is a widely used model to study many aspects of cancer biology and therapeutics in a solid tumor. Melanomas aggressively progress within a dynamic microenvironment containing in addition to tumor cells, stroma cells and components such as fibroblasts, immune cells, vascular cells, extracellular matrix (ECM) and extracellular molecules. The goal of this study was to elucidate the processes of tumor progression by identifying differentially expressed proteins in the tumor mass during specific stages of tumor growth. A comparative proteome analysis was performed on B16-F10 derived tumors in C57BL/6 mice at days 3, 5, 7, and 10. Statistical approaches were used to determine quantitative differential protein expression at each tumor time stage. Hierarchical clustering of 44 protein spots (p < 0.01) revealed a progressive change in the tumor mass when all 4 time stages were classified together, but there was a clear switch in expression of these proteins between the day 5 and the day 7 tumors. A trend analysis showed 53 protein spots (p < 0.001) following 6 predominant kinetic paths of expression as the tumor progressed. The protein spots were then identified using MALDI-TOF mass spectrometry. Proteins involved in glycolysis, inflammation, wounding, superoxide metabolism, and chemotaxis increased during tumorigenesis. From day 3 to day 7 VEGF and active cathepsin D were induced 7-fold and 4-fold, respectively. Proteins involved in electron transport, protein folding, blood coagulation, and transport decreased during tumorigenesis. This work illustrates changes in the biology of the B16-F10 tumor mass during tumor progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.