Cobalt hangman corrole, bearing β-octafluoro and meso-pentafluorophenyl substituents, is an active water splitting catalyst. When immobilized in Nafion films, the turnover frequencies for the 4e À /4H þ process at the single cobalt center of the hangman platform approach 1 s À1 . The pH dependence of the water splitting reaction suggests a proton-coupled electron transfer (PCET) catalytic mechanism.
Rechargeable lithium-air batteries have the potential to provide Ϸ3 times higher specific energy of fully packaged batteries than conventional lithium rechargeable batteries. However, very little is known about the oxygen reduction reaction ͑ORR͒ and oxygen evolution in the presence of lithium ions in aprotic electrolytes, which hinders the improvement of low round-trip efficiencies of current lithium-air batteries. We report the intrinsic ORR activity on glassy carbon ͑GC͒ as well as polycrystalline Au and Pt electrodes, where Au is the most active with an activity trend of Au ӷ GC Ͼ Pt. Rotating disk electrode ͑RDE͒ measurements were used to obtain the kinetic current of the ORR and the reaction order with respect to oxygen partial pressure in 1 M LiClO 4 propylene carbonate:1,2-dimethoxyethane ͑1:2 v/v͒. In addition, air electrodes with Vulcan carbon or Au or Pt nanoparticles supported on Vulcan were examined in Li-O 2 single cells, where the observed discharge cell voltages follow the catalytic trend established by RDE measurements. The ORR mechanism and the rate-determining steps were discussed and contrasted with the ORR activity trend in acid and alkaline solutions.
The construction of a new class of compounds--the hangman corroles--is provided efficiently by the modification of macrocyclic forming reactions from bilanes. Hangman cobalt corroles are furnished in good yields from a one-pot condensation of dipyrromethane with the aldehyde of a xanthene spacer followed by metal insertion using microwave irradiation. In high oxidation states, X-band EPR spectra and DFT calculations of cobalt corrole axially ligated by chloride are consistent with the description of a Co(III) center residing in the one-electron oxidized corrole macrocycle. These high oxidation states are likely accessed in the activation of O-O bonds. Along these lines, we show that the proton-donating group of the hangman platform works in concert with the redox properties of the corrole to enhance the catalytic activity of O-O bond activation. The hangman corroles show enhanced activity for the selective reduction of oxygen to water as compared to their unmodified counterparts. The oxygen adduct, prior to oxygen reduction, is characterized by EPR and absorption spectroscopy.
Generation of soluble sources of peroxide dianion (O(2)(2-)) is a challenge in dioxygen chemistry. The oxidizing nature of this anion renders its stabilization in organic media difficult. This Report describes the chemically reversible reduction of oxygen (O(2)) to cryptand-encapsulated O(2)(2-). The dianion is stabilized by strong hydrogen bonds to N-H groups from the hexacarboxamide cryptand. Analogous stabilization of peroxide by hydrogen bonding has been invoked recently in crystalline saccharide and protein systems. The present peroxide adducts are stable at room temperature in dimethyl sulfoxide (DMSO) and N,N'-dimethylformamide (DMF). These adducts can be obtained in gram quantities from the cryptand-driven disproportionation reaction of potassium superoxide (KO(2)) at room temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.