How do the pioneer networks in the axial core of the vertebrate nervous system first develop? Fundamental to understanding any full-scale neuronal network is knowledge of the constituent neurons, their properties, synaptic interconnections, and normal activity. Our novel strategy uses basic developmental rules to generate model networks that retain individual neuron and synapse resolution and are capable of reproducing correct, whole animal responses. We apply our developmental strategy to young Xenopus tadpoles, whose brainstem and spinal cord share a core vertebrate plan, but at a tractable complexity. Following detailed anatomical and physiological measurements to complete a descriptive library of each type of spinal neuron, we build models of their axon growth controlled by simple chemical gradients and physical barriers. By adding dendrites and allowing probabilistic formation of synaptic connections, we reconstruct network connectivity among up to 2000 neurons. When the resulting "network" is populated by model neurons and synapses, with properties based on physiology, it can respond to sensory stimulation by mimicking tadpole swimming behavior. This functioning model represents the most complete reconstruction of a vertebrate neuronal network that can reproduce the complex, rhythmic behavior of a whole animal. The findings validate our novel developmental strategy for generating realistic networks with individual neuron-and synapse-level resolution. We use it to demonstrate how early functional neuronal connectivity and behavior may in life result from simple developmental "rules," which lay out a scaffold for the vertebrate CNS without specific neuron-to-neuron recognition.
Many motor responses to sensory input, like locomotion or eye movements, are much slower than reflexes. Can simpler animals provide fundamental answers about the cellular mechanisms for motor decisions? Can we observe the 'accumulation' of excitation to threshold proposed to underlie decision making elsewhere? We explore how somatosensory touch stimulation leads to the decision to swim in hatchling Xenopus tadpoles. Delays measured to swimming in behaving and immobilised tadpoles are long and variable. Activity in their extensively studied sensory and sensory pathway neurons is too short-lived to explain these response delays. Instead, whole-cell recordings from the hindbrain reticulospinal neurons that drive swimming show that these receive prolonged, variable synaptic excitation lasting for nearly a second following a brief stimulus. They fire and initiate swimming when this excitation reaches threshold. Analysis of the summation of excitation requires us to propose extended firing in currently undefined presynaptic hindbrain neurons. Simple models show that a small excitatory recurrent-network inserted in the sensory pathway can mimic this process. We suggest that such a network may generate slow, variable summation of excitation to threshold. This excitation provides a simple memory of the sensory stimulus. It allows temporal and spatial integration of sensory inputs and explains the long, variable delays to swimming. The process resembles the 'accumulation' of excitation proposed for cortical circuits in mammals. We conclude that fundamental elements of sensory memory and decision making are present in the brainstem at a surprisingly early stage in development.
Many neural circuits are capable of generating multiple stereotyped outputs after different sensory inputs or neuromodulation. We have previously identified the central pattern generator (CPG) for Xenopus tadpole swimming that involves antiphase oscillations of activity between the left and right sides. Here we analyze the cellular basis for spontaneous left-right motor synchrony characterized by simultaneous bursting on both sides at twice the swimming frequency. Spontaneous synchrony bouts are rare in most tadpoles, and they instantly emerge from and switch back to swimming, most frequently within the first second after skin stimulation. Analyses show that only neurons that are active during swimming fire action potentials in synchrony, suggesting both output patterns derive from the same neural circuit. The firing of excitatory descending interneurons (dINs) leads that of other types of neurons in synchrony as it does in swimming. During synchrony, the time window between phasic excitation and inhibition is 7.9 Ϯ 1 ms, shorter than that in swimming (41 Ϯ 2.3 ms). The occasional, extra midcycle firing of dINs during swimming may initiate synchrony, and mismatches of timing in the left and right activity can switch synchrony back to swimming. Computer modeling supports these findings by showing that the same neural network, in which reciprocal inhibition mediates rebound firing, can generate both swimming and synchrony without circuit reconfiguration. Modeling also shows that lengthening the time window between phasic excitation and inhibition by increasing dIN synaptic/conduction delay can improve the stability of synchrony.
Although, in most animals, brain connectivity varies between individuals, behaviour is often similar across a species. What fundamental structural properties are shared across individual networks that define this behaviour? We describe a probabilistic model of connectivity in the hatchling Xenopus tadpole spinal cord which, when combined with a spiking model, reliably produces rhythmic activity corresponding to swimming. The probabilistic model allows calculation of structural characteristics that reflect common network properties, independent of individual network realisations. We use the structural characteristics to study examples of neuronal dynamics, in the complete network and various sub-networks, and this allows us to explain the basis for key experimental findings, and make predictions for experiments. We also study how structural and functional features differ between detailed anatomical connectomes and those generated by our new, simpler, model (meta-model).
Table of contentsA1 Functional advantages of cell-type heterogeneity in neural circuitsTatyana O. SharpeeA2 Mesoscopic modeling of propagating waves in visual cortexAlain DestexheA3 Dynamics and biomarkers of mental disordersMitsuo KawatoF1 Precise recruitment of spiking output at theta frequencies requires dendritic h-channels in multi-compartment models of oriens-lacunosum/moleculare hippocampal interneuronsVladislav Sekulić, Frances K. SkinnerF2 Kernel methods in reconstruction of current sources from extracellular potentials for single cells and the whole brainsDaniel K. Wójcik, Chaitanya Chintaluri, Dorottya Cserpán, Zoltán SomogyváriF3 The synchronized periods depend on intracellular transcriptional repression mechanisms in circadian clocks.Jae Kyoung Kim, Zachary P. Kilpatrick, Matthew R. Bennett, Kresimir JosićO1 Assessing irregularity and coordination of spiking-bursting rhythms in central pattern generatorsIrene Elices, David Arroyo, Rafael Levi, Francisco B. Rodriguez, Pablo VaronaO2 Regulation of top-down processing by cortically-projecting parvalbumin positive neurons in basal forebrainEunjin Hwang, Bowon Kim, Hio-Been Han, Tae Kim, James T. McKenna, Ritchie E. Brown, Robert W. McCarley, Jee Hyun ChoiO3 Modeling auditory stream segregation, build-up and bistabilityJames Rankin, Pamela Osborn Popp, John RinzelO4 Strong competition between tonotopic neural ensembles explains pitch-related dynamics of auditory cortex evoked fieldsAlejandro Tabas, André Rupp, Emili Balaguer-BallesterO5 A simple model of retinal response to multi-electrode stimulationMatias I. Maturana, David B. Grayden, Shaun L. Cloherty, Tatiana Kameneva, Michael R. Ibbotson, Hamish MeffinO6 Noise correlations in V4 area correlate with behavioral performance in visual discrimination taskVeronika Koren, Timm Lochmann, Valentin Dragoi, Klaus ObermayerO7 Input-location dependent gain modulation in cerebellar nucleus neuronsMaria Psarrou, Maria Schilstra, Neil Davey, Benjamin Torben-Nielsen, Volker SteuberO8 Analytic solution of cable energy function for cortical axons and dendritesHuiwen Ju, Jiao Yu, Michael L. Hines, Liang Chen, Yuguo YuO9 C. elegans interactome: interactive visualization of Caenorhabditis elegans worm neuronal networkJimin Kim, Will Leahy, Eli ShlizermanO10 Is the model any good? Objective criteria for computational neuroscience model selectionJustas Birgiolas, Richard C. Gerkin, Sharon M. CrookO11 Cooperation and competition of gamma oscillation mechanismsAtthaphon Viriyopase, Raoul-Martin Memmesheimer, Stan GielenO12 A discrete structure of the brain wavesYuri Dabaghian, Justin DeVito, Luca PerottiO13 Direction-specific silencing of the Drosophila gaze stabilization systemAnmo J. Kim, Lisa M. Fenk, Cheng Lyu, Gaby MaimonO14 What does the fruit fly think about values? A model of olfactory associative learningChang Zhao, Yves Widmer, Simon Sprecher,Walter SennO15 Effects of ionic diffusion on power spectra of local field potentials (LFP)Geir Halnes, Tuomo Mäki-Marttunen, Daniel Keller, Klas H. Pettersen,Ole A. Andreassen...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.