A common question in perceptual science is to what extent different stimulus dimensions are processed independently. General recognition theory (GRT) offers a formal framework via which different notions of independence can be defined and tested rigorously, while also dissociating perceptual from decisional factors. This article presents a new GRT model that overcomes several shortcomings with previous approaches, including a clearer separation between perceptual and decisional processes and a more complete description of such processes. The model assumes that different individuals share similar perceptual representations, but vary in their attention to dimensions and in the decisional strategies they use. We apply the model to the analysis of interactions between identity and emotional expression during face recognition. The results of previous research aimed at this problem have been disparate. Participants identified four faces, which resulted from the combination of two identities and two expressions. An analysis using the new GRT model showed a complex pattern of dimensional interactions. The perception of emotional expression was not affected by changes in identity, but the perception of identity was affected by changes in emotional expression. There were violations of decisional separability of expression from identity and of identity from expression, with the former being more consistent across participants than the latter. One explanation for the disparate results in the literature is that decisional strategies may have varied across studies and influenced the results of tests of perceptual interactions, as previous studies lacked the ability to dissociate between perceptual and decisional interactions.
An influential theoretical perspective describes an implicit category-learning system that associates regions of perceptual space with response outputs by integrating information preattentionally and predecisionally across multiple stimulus dimensions. This study tested whether this kind of implicit, information-integration category learning is possible across stimulus dimensions lying in different sensory modalities. Humans learned categories composed of conjoint visual-auditory category exemplars comprising a visual component (rectangles varying in the density of contained lit pixels) and an auditory component (Experiment 1: auditory sequences varying in duration; Experiment 2: pure tones varying in pitch). The categories had either a one-dimensional, rule-based solution or a two-dimensional, information-integration solution. Humans can solve the information-integration category tasks by integrating information across two stimulus modalities. The results demonstrate an important cross-modal form of sensory integration in the service of category learning, and they advance the field’s knowledge about the sensory organization of systems for categorization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.