The evolutionary origin of adaptive immune receptors is not understood below the phylogenetic level of the jawed vertebrates. We describe here a strategy for the selective cloning of cDNAs encoding secreted or transmembrane proteins that uses a bacterial plasmid (Amptrap) with a defective beta-lactamase gene. This method requires knowledge of only a single target motif that corresponds to as few as three amino acids; it was validated with major histocompatibility complex genes from a cartilaginous fish. Using this approach, we identified families of genes encoding secreted proteins with two diversified immunoglobulin-like variable (V) domains and a chitin-binding domain in amphioxus, a protochordate. Thus, multigenic families encoding diversified V regions exist in a species lacking an adaptive immune response.
A number of different classes of molecules function as structural matrices for effecting innate and adaptive immunity. The most extensively characterized mediators of adaptive immunity are the immunoglobulins and T-cell antigen receptors found in jawed vertebrates. In both classes of molecules, unique receptor specificity is effected through somatic variation in the variable (V) structural domain. V region-containing chitin-binding proteins (VCBPs) consist of two tandem Ig V domains as well as a chitin-binding domain. VCBPs are encoded at four loci (i.e., VCBPA-VCBPD) in Ciona, a urochordate, and are expressed by distinct epithelial cells of the stomach and intestine, as well as by granular amoebocytes present in the lamina propria of the gut and in circulating blood. VCBPs are secreted into the gut lumen, and direct binding to bacterial surfaces can be detected by immunogold analysis. Affinity-purified native and recombinant VCBP-C, as well as a construct consisting only of the tandem V domains, enhance bacterial phagocytosis by granular amoebocytes in vitro. Various aspects of VCBP expression and function suggest an early origin for the key elements that are central to the dialogue between the immune system of the host and gut microflora.bacteria opsonization | bacteria phagocytosis | immunoglobulin variable domains D ifferent molecular and cellular mechanisms that effect "innate" or "adaptive" immune responses shape immunity to pathogens such as viruses, bacteria, and parasites in all metazoans. The innate immune system includes germline-encoded receptor molecules that recognize widely divergent molecular structures. In contrast, the gene loci that encode the receptor molecules of the adaptive immune system undergo unique rearrangements in individual somatic cells that expand clonally and account for nearlimitless functional variation of receptors. The adaptive immune response is limited to jawed vertebrate species, whereas innate immunity is characteristic of all metazoan phyla.Alternative mechanisms of innate and adaptive immunity have been described in jawless vertebrates, protochordates, and other invertebrates (1, 2). Given the absence of V domain-mediated immunity in jawless vertebrates, the protochordate lineages are particular significant for understanding the origins of V region diversity as a basic form of immune recognition. In the protochordate Branchiostoma floridae (amphioxus), variable region-containing chitin-binding proteins (VCBPs) were described that consist of two variable (V) Ig domains and a single chitin-binding domain (3). VCBPs are encoded by diverse, nonrecombining, haplotypically variable alleles (4-6). Detailed structural studies of VCBPs reveal that the hyperpolymorphic positions are localized on the β-sheet surfaces of the folded V domains (7) and not on the connecting loops, which are the sites of the highest variability in the V domains of Ig and T-cell receptor (TCR). Other innate immune functions (e.g., viral receptor and superantigen-binding sites) are associated with V regi...
Antigen recognition in the adaptive immune response by Ig and T-cell antigen receptors (TCRs) is effected through patterned differences in the peptide sequence in the V regions. V-region specificity forms through genetically programmed rearrangement of individual, diversified segmental elements in single somatic cells. Other Ig superfamily members, including natural killer receptors that mediate cell-surface recognition, do not undergo segmental reorganization, and contain type-2 C (C2) domains, which are structurally distinct from the C1 domains found in Ig and TCR. Immunoreceptor tyrosine-based inhibitory motifs that transduce negative regulatory signals through the cell membrane are found in certain natural killer and other cell surface inhibitory receptors, but not in Ig and TCR. In this study, we employ a genomic approach by using the pufferfish (Spheroides nephelus) to characterize a nonrearranging novel immune-type receptor gene family. Twentysix different nonrearranging genes, which each encode highly diversified V as well as a V-like C2 extracellular domain, a transmembrane region, and in most instances, an immunoreceptor tyrosine-based inhibitory motif-containing cytoplasmic tail, are identified in an Ϸ113 kb P1 artificial chromosome insert. The presence in novel immune-type receptor genes of V regions that are related closely to those found in Ig and TCR as well as regulatory motifs that are characteristic of inhibitory receptors implies a heretofore unrecognized link between known receptors that mediate adaptive and innate immune functions.V gene diversity ͉ immunoreceptor tyrosine-based inhibitory motif ͉ evolution ͉ adaptive immunity ͉ innate immunity I g and T-cell antigen receptor (TCR) genes are the primary mediators of highly specific adaptive immune responses. Recognition of antigens by these two structurally related but functionally distinct types of antigen-binding receptors is achieved through specific polypeptide folding patterns in N-terminal V regions that are created by both somatic rearrangement of individual segmental elements encoding V, diversity (D), and J regions as well as through nontemplated mechanisms that introduce additional sequence variation (1, 2). Patterns of shared sequence identity, organizational similarities, and a common rearrangement mechanism in Ig and TCR found in jawed vertebrate species are consistent with their origin from a common ancestral form in the distant evolutionary past and diversification in structure and organization throughout vertebrate phylogeny (3). Although V regions have undergone diversification during vertebrate evolution, comparisons of both Ig and TCR, as well as CD8, a nonrearranging V region-containing gene expressed on the surface of T cells (4, 5), indicate general conservation of short-sequence motifs in the second and third framework regions (FR2 and FR3) of the V region (6). Sharing of such short-sequence regions forms the basis for a strategy that has been used to identify TCR gene homologs as well as Ig genes and an Ig-like gene ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.