The effects of attention on the responses of visual neurons have been described as a scaling or additive modulation independent of stimulus features and contrast, or as a contrast-dependent modulation. We explored these alternatives by recording neuronal responses in macaque area MT to moving stimuli that evoked similar firing rates but varied in contrast and direction. We presented two identical pairs of stimuli, one inside the neurons' receptive field and the other outside, in the opposite hemifield. One stimulus of each pair always had high contrast and moved in the recorded cell's antipreferred direction (AP pattern), while the other (test pattern) could either move in the cell's preferred direction and vary in contrast, or have the same contrast as the AP pattern and vary in direction. For different stimulus pairs evoking similar responses, switching attention between the two AP patterns, or directing attention from a fixation spot to the AP pattern inside or outside the receptive field, produced a stronger suppression of responses to varying contrast pairs, reaching a maximum (ϳ20%) at intermediate contrast. For invariable contrast pairs, switching attention from the fixation spot to the AP pattern produced a modulation that ranged from 10% suppression when the test pattern moved in the cells preferred direction to 14% enhancement when it moved in a direction 90°away from that direction. Our results are incompatible with a scaling or additive modulation of MT neurons' response by attention, but support models where spatial and feature-based attention modulate input signals into the area normalization circuit.
Oxidation of melatonin was followed by measuring chemiluminescence emitted during pyrrole ring cleavage, a process leading to the main oxidation product of this indoleamine, N1-acetyl-N2-formyl-5-methoxykynuramine (AFMK). Radical reactions of melatonin were studied in two variants of a moderately alkaline (pH 8) H2O2 system, one of which contained hemin as a catalyst. In both systems, light emission from melatonin oxidation lasted several hours. Time courses and turnover rates depended on the presence or absence of hemin; the catalyst enhanced light emission many-fold. In the two reaction systems, the presence of hydrogen carbonate (HCO)(3)(-) enhanced chemiluminescence by more than 10-fold, indicating scavenging of carbonate radicals. In the presence of 10% dimethylsulfoxide (DMSO) or 1 m mannitol, HCO(3)(-)-dependent as well as independent light emissions were only partially inhibited. With regard to the stimulatory effect of HCO(3)(-), this implies a formation of carbonate radicals (CO)(3)(-) independent of hydroxyl (OH) radicals, presumably involving superoxide anions abundantly present in the system. Tiron, a scavenger of superoxide anions, strongly and almost instantaneously inhibited chemiluminescence, in accordance to the requirement of this reactive oxygen species for AFMK formation and its involvement in -radical formation. Melatonin's capability of scavenging CO(3)(-) may contribute to its protective potency.
Visual attention modulates neuronal responses in primate motion processing area MT. However, whether it modulates the strength local field potentials (LFP-power) within this area remains unexplored, as well as how this modulation relates to the one of the neurons' response. We investigated these issues by simultaneously recording LFPs and neuronal responses evoked by moving random dot patterns of varying direction and contrast in area MT of two male monkeys (Macaca mulatta) during different behavioral conditions. We found that: (1) LFP-power in the ␥ (30 -120 Hz), but not in the ␦ (2-4 Hz), (4 -8 Hz), ␣ (8 -12 Hz),  1 (12-20 Hz), and  2 (20 -30 Hz) frequency bands, was tuned for motion direction and contrast, similarly to the neurons' response, (2) shifting attention into a neuron's receptive field (RF) decreased LFP-power in the bands below 30 Hz (except the band), whereas shifting attention to a stimulus motion direction outside the RF had no effect in these bands, (3) LFP-power in the ␥ band, however, exhibited both spatial-and motion directiondependent attentional modulation (increase or decrease), which was highly correlated with the modulation of the neurons' response. These results demonstrate that in area MT, shifting attention into the RFs of neurons in the vicinity of the recording electrode, or to the direction of a moving stimulus located far away from these RFs, distinctively modulates LFP-power in the various frequency bands. They further suggest differences in the neural mechanisms underlying these types of attentional modulation of visual processing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.