Dry eye disease (DED) is a major cause of ocular discomfort, inflammation and dysfunction worldwide. Tear film instability in DED both causes and is exacerbated by disruption of the corneal epithelium. This tandem leads to a cycle of inflammation at the corneal surface involving immune cell dysregulation and increased chemokines and cytokines, which activate mitogen-activated protein kinases in the epithelium and elevates matrix metalloproteinases (MMPs). We review evidence suggesting that corneal collagen might be highly susceptible in DED to MMP-induced disruption, digestion, and thinning. We also summarize that collagen is far from inert and contains binding sites that serve as ligands for multiple inflammatory and immune regulators. Fragmented collagen not only challenges these receptor-ligand binding relationships, but also can promote recruitment and motility of proinflammatory immune cells. Current physician-directed therapies for DED focus on reducing inflammation, but do not directly ameliorate the underlying corneal damage that could exacerbate surface inflammation. We argue that an important gap in practice is lack of a direct therapeutic reparative for damaged corneal collagen, which is slow to heal, and likely amplifies sight-threatening inflammation. Healing fragmented collagen in the cornea may represent a more effective means to interrupt the "vicious cycle" of inflammation in DED and other conditions that damages, sometimes irreversibly, the ocular surface.
Optic neuropathies are a major cause of visual disabilities worldwide, causing irreversible vision loss through the degeneration of retinal ganglion cell (RGC) axons, which comprise the optic nerve. Chief among these is glaucoma, in which sensitivity to intraocular pressure (IOP) leads to RGC axon dysfunction followed by outright degeneration of the optic projection. Current treatments focus entirely on lowering IOP through topical hypotensive drugs, surgery to facilitate aqueous fluid outflow, or both. Despite this investment in time and resources, many patients continue to lose vision, underscoring the need for new therapeutics that target neurodegeneration directly. One element of progression in glaucoma involves matrix metalloproteinase (MMP) remodeling of the collagen-rich extracellular milieu of RGC axons as they exit the retina through the optic nerve head. Thus, we investigated the ability of collagen mimetic peptides (CMPs) representing various single strand fractions of triple helix human type I collagen to protect RGC axons in an inducible model of glaucoma. First, using dorsal root ganglia maintained in vitro on human type I collagen, we found that multiple CMPs significantly promote neurite outgrowth (+35%) compared to vehicle following MMP-induced fragmentation of the α1(I) and α2(I) chains. We then applied CMP to adult mouse eyes in vivo following microbead occlusion to elevate IOP and determined its influence on anterograde axon transport to the superior colliculus, the primary RGC projection target in rodents. In glaucoma models, sensitivity to IOP causes early degradation in axon function, including anterograde transport from retina to central brain targets. We found that CMP treatment rescued anterograde transport following a 3-week +50% elevation in IOP. These results suggest that CMPs generally may represent a novel therapeutic to supplement existing treatments or as a neuroprotective option for patients who do not respond to IOP-lowering regimens.
The cornea of the eye is at risk for injury through constant exposure to the extraocular environment. A highly collagenous structure, the cornea contains several different types distributed across multiple layers. The anterior-most layer contains non-keratinized epithelial cells that serve as a barrier to environmental, microbial, and other insults. Renewal and migration of basal epithelial cells from the limbus involve critical interactions between secreted basement membranes, composed primarily of type IV collagen, and underlying Bowman’s and stromal layers, which contain primarily type I collagen. This process is challenged in many diseases and conditions that insult the ocular surface and damage underlying collagen. We investigated the capacity of a collagen mimetic peptide (CMP), representing a fraction of a single strand of the damaged triple helix human type I collagen, to promote epithelial healing following an acute corneal wound. In vitro, the collagen mimetic peptide promoted the realignment of collagen damaged by enzymic digestion. In an in vivo mouse model, topical application of a CMP-containing formulation following a 360° lamellar keratectomy targeting the corneal epithelial layer accelerated wound closure during a 24 h period, compared to vehicle. We found that the CMP increased adherence of the basal epithelium to the underlying substrate and enhanced density of epithelial cells, while reducing variability in the regenerating layer. These results suggest that CMPs may represent a novel therapeutic to heal corneal tissue by repairing underlying collagen in conditions that damage the ocular surface.
Vision loss through the degeneration of retinal ganglion cell (RGC) axons occurs in both chronic and acute conditions that target the optic nerve. These include glaucoma, in which sensitivity to intraocular pressure (IOP) causes early RGC axonal dysfunction, and optic nerve trauma, which causes rapid axon degeneration from the site of injury. In each case, degeneration is irreversible, necessitating new therapeutics that protect, repair, and regenerate RGC axons. Recently, we demonstrated the reparative capacity of using collagen mimetic peptides (CMPs) to heal fragmented collagen in the neuronal extracellular milieu. This was an important step in the development of neuronal-based therapies since neurodegeneration involves matrix metalloproteinase (MMP)-mediated remodeling of the collagen-rich environment in which neurons and their axons exist. We found that intraocular delivery of a CMP comprising single-strand fractions of triple helix human type I collagen prevented early RGC axon dysfunction in an inducible glaucoma model. Additionally, CMPs also promoted neurite outgrowth from dorsal root ganglia, challenged in vitro by partial digestion of collagen. Here, we compared the ability of a CMP sequence to protect RGC axons in both inducible glaucoma and optic nerve crush. A three-week +40% elevation in IOP caused a 67% degradation in anterograde transport to the superior colliculus, the primary retinal projection target in rodents. We found that a single intravitreal injection of CMP during the period of IOP elevation significantly reduced this degradation. The same CMP delivered shortly after optic nerve crush promoted significant axonal recovery during the two-week period following injury. Together, these findings support a novel protective and reparative role for the use of CMPs in both chronic and acute conditions affecting the survival of RGC axons in the optic projection to the brain.
Epithelial cells of multiple types produce and interact with the extracellular matrix to maintain structural integrity and promote healthy function within diverse endogenous tissues. Collagen is a critical component of the matrix, and challenges to collagen’s stability in aging, disease, and injury influence survival of adherent epithelial cells. The retinal pigment epithelium (RPE) is important for maintaining proper function of the light-sensitive photoreceptors in the neural retina, in part through synergy with the collagen-rich Bruch’s membrane that promotes RPE adherence. Degradation of Bruch’s is associated with RPE degeneration, which is implicated early in age-related macular degeneration, a leading cause of irreversible vision loss worldwide. Collagen mimetic peptides (CMPs) effectively repair damage to collagen helices, which are present in all collagens. Our previous work indicates that in doing so, CMPs promote survival and integrity of affected cells and tissues in models of ocular injury and disease, including wounding of corneal epithelial cells. Here, we show that CMPs increase adherence and migration of the ARPE-19 line of human RPE cells challenged by digestion of their collagen substrate. Application of CMPs also reduced both ARPE-19 secretion of pro-inflammatory cytokines (interleukins 6 and 8) and production of reactive oxygen species. Taken together, these results suggest that repairing collagen damaged by aging or other pathogenic processes in the posterior eye could improve RPE adherence and survival and, in doing so, reduce the inflammatory and oxidative stress that perpetuates the cycle of destruction at the root of age-related diseases of the outer retina.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.