DR_MOMP delivers a system-based biomarker with significant potential as a prognostic tool for stage III CRC that significantly improves established histopathological risk factors.
3Purpose: Apoptosis is essential for chemotherapy responses. In this discovery and validation study, 4we evaluated the suitability of a mathematical model of apoptosis execution (APOPTO-CELL) as a 5 stand-alone signature and as a constituent of further refined prognostic stratification tools. 6Experimental Design: Apoptosis competency of primary tumor samples from n=120 stage III 7 colorectal cancer patients was calculated by APOPTO-CELL from measured protein concentrations of 35Among all clinicopathological, demographic, and molecular predictors analyzed, enriched-apoptosis 36 systems modeling delivered the highest ranking independent prognostic biomarker. Furthermore, 37 apoptosis modelling can be combined with molecular tumor subtyping to further refine risk 38 predictions. 39We report the clinical validation of diagnostic tools for stage III CRC patients that could deliver 40 superior quality of care by personalizing cancer treatment. 42Word count: 119.
Bloodstream forms of Trypanosoma brucei contain a glycosylphosphatidylinositol-specific phospholipase C (GPI-PLC) that cleaves the GPI-anchor of the variable surface glycoprotein (VSG). Its location in trypanosomes has been controversial. Here, using confocal microscopy and surface labelling techniques, we show that the GPI-PLC is located exclusively in a linear array on the outside of the flagellar membrane, close to the flagellar attachment zone, but does not co-localize with the flagellar attachment zone protein, FAZ1. Consequently, the GPI-PLC and the VSG occupy the same plasma membrane leaflet, which resolves the topological problem associated with the cleavage reaction if the VSG and the GPI-PLC were on opposite sides of the membrane. The exterior location requires the enzyme to be tightly regulated to prevent VSG release under basal conditions. During stimulated VSG release in intact cells, the GPI-PLC did not change location, suggesting that the release mechanism involves lateral diffusion of the VSG in the plane of the membrane to the fixed position of the GPI-PLC.
The Bcl-2 homology 3-only protein Bid is an important mediator of death receptor-induced apoptosis. Recent reports and this study suggest that Bid may also mediate genotoxic drug-induced apoptosis of various human cancer cells. Here, we characterized the role of Bid and the mechanism of Bid activation during oxaliplatininduced apoptosis of HeLa cervical cancer cells. Small hairpin RNA-mediated silencing of Bid protected HeLa cells against both death receptor-and oxaliplatin-induced apoptosis. Expression of a Bid mutant in which caspase-8 cleavage site was mutated (D59A) reactivated oxaliplatin-induced apoptosis in Bid-deficient cells but failed to reactivate death receptor-induced apoptosis, suggesting that caspase-8-mediated Bid cleavage did not contribute to oxaliplatin-induced apoptosis. Overexpression of bcl-2 or treatment with the pan-caspase inhibitor N-benzyloxycarbonylVal-Ala-DL-Asp-fluoromethylketone abolished caspase-2, -8, -9, and -3 activation as well as Bid cleavage in response to oxaliplatin, suggesting that Bid cleavage occurred downstream of mitochondrial permeabilization and was predominantly mediated by caspases. We also detected an early activation of calpains in response to oxaliplatin. Calpain inhibition reduced Bid cleavage, mitochondrial depolarization, and activation of caspase-9, -3, -2, and -8 in response to oxaliplatin. Further experiments, however, suggested that Bid cleavage by calpains was not a prerequisite for oxaliplatin-induced apoptosis: single-cell imaging experiments using a yellow fluorescent protein-Bid-cyan fluorescent protein probe demonstrated translocation of full-length Bid to mitochondria that was insensitive to calpain or caspase inhibition. Moreover, calpain inhibition showed a potent protective effect in Bidsilenced cells. In conclusion, our data suggest that calpains and Bid act in a cooperative, but mutually independent, manner to mediate oxaliplatin-induced apoptosis of HeLa cells.
Antibodies targeting the human epidermal growth factor receptor (EGFR) are used for the treatment of RAS wild-type metastatic colorectal cancer. A significant proportion of patients remains unresponsive to this therapy. Here, we performed a reversephase protein array-based (phospho)protein analysis of 63 KRAS, NRAS, BRAF and PIK3CA wild-type metastatic CRC tumours. Responses of tumours to anti-EGFR therapy with cetuximab were recorded in patient-derived xenograft (PDX) models. Unsupervised hierarchical clustering of pretreatment tumour tissue identified three clusters, of which Cluster C3 was exclusively composed of responders. Clusters C1 and C2 exhibited mixed responses. None of the three protein clusters exhibited a significant correlation with transcriptome-based subtypes. Analysis of protein signatures across all PDXs identified 14 markers that discriminated cetuximab-sensitive and cetuximab-resistant tumours: PDK1 (S241), caspase-8, Shc (Y317), Stat3 (Y705), p27, GSK-3β (S9), HER3, PKC-α (S657), EGFR (Y1068), Akt (S473), S6 ribosomal protein (S240/244), HER3 (Y1289), NF-κB-p65 (S536) and Gab-1 (Y627). Least absolute shrinkage and selection operator and binominal logistic regression analysis delivered refined protein signatures for predicting response to cetuximab. (Phospo-)protein analysis of matched pretreated and posttreated models furthermore showed significant reduction of Gab-1 (Y627) and GSK-3β (S9) exclusively in responding models, suggesting novel targets for treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.