Background
Endometriosis is a common, complex disorder which is underrecognized and subject to prolonged delays in diagnosis. It is accompanied by significant changes in the eutopic endometrial lining.
Methods
We have undertaken the first single-cell RNA-sequencing (scRNA-Seq) comparison of endometrial tissues in freshly collected menstrual effluent (ME) from 33 subjects, including confirmed endometriosis patients (cases) and controls as well as symptomatic subjects (who have chronic symptoms suggestive of endometriosis but have not been diagnosed).
Results
We identify a unique subcluster of proliferating uterine natural killer (uNK) cells in ME-tissues from controls that is almost absent from endometriosis cases, along with a striking reduction of total uNK cells in the ME of cases (p < 10−16). In addition, an IGFBP1+ decidualized subset of endometrial stromal cells are abundant in the shed endometrium of controls when compared to cases (p < 10−16) confirming findings of compromised decidualization of cultured stromal cells from cases. By contrast, endometrial stromal cells from cases are enriched in cells expressing pro-inflammatory and senescent phenotypes. An enrichment of B cells in the cases (p = 5.8 × 10−6) raises the possibility that some may have chronic endometritis, a disorder which predisposes to endometriosis.
Conclusions
We propose that characterization of endometrial tissues in ME will provide an effective screening tool for identifying endometriosis in patients with chronic symptoms suggestive of this disorder. This constitutes a major advance, since delayed diagnosis for many years is a major clinical problem in the evaluation of these patients. Comprehensive analysis of ME is expected to lead to new diagnostic and therapeutic approaches to endometriosis and other associated reproductive disorders such as female infertility.
The success of next-generation sequencing depends on the accuracy of variant calls. Few objective protocols exist for QC following variant calling from whole genome sequencing (WGS) data. After applying QC filtering based on Genome Analysis Tool Kit (GATK) best practices, we used genotype discordance of eight samples that were sequenced twice each to evaluate the proportion of potentially inaccurate variant calls. We designed a QC pipeline involving hard filters to improve replicate genotype concordance, which indicates improved accuracy of genotype calls. Our pipeline analyzes the efficacy of each filtering step. We initially applied this strategy to well-characterized variants from the ClinVar database, and subsequently to the full WGS dataset. The genome-wide biallelic pipeline removed 82.11% of discordant and 14.89% of concordant genotypes, and improved the concordance rate from 98.53% to 99.69%. The variant-level read depth filter most improved the genome-wide biallelic concordance rate. We also adapted this pipeline for triallelic sites, given the increasing proportion of multiallelic sites as sample sizes increase. For triallelic sites containing only SNVs, the concordance rate improved from 97.68% to 99.80%. Our QC pipeline removes many potentially false positive calls that pass in GATK, and may inform future WGS studies prior to variant effect analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.