Trichloroethylene (TRI) is readily absorbed into the body through the lungs and gastrointestinal mucosa. Exposure to TRI can occur from contamination of air, water, and food; and this contamination may be sufficient to produce adverse effects in the exposed populations. Elimination of TRI involves two major processes: pulmonary excretion of unchanged TRI and relatively rapid hepatic biotransformation to urinary metabolites. The principal site of metabolism of TRI is the liver, but the lung and possibly other tissues also metabolize TRI, and dichlorovinyl-cysteine (DCVC) is formed in the kidney. Humans appear to metabolize TRI extensively. Both rats and mice also have a considerable capacity to metabolize TRI, and the maximal capacities of the rat versus the mouse appear to be more closely related to relative body surface areas than to body weights. Metabolism is almost linearly related to dose at lower doses, becoming dose dependent at higher doses, and is probably best described overall by Michaelis-Menten kinetics. Major end metabolites are trichloroethanol (TCE), trichloroethanol-glucuronide, and trichloroacetic acid (TCA). Metabolism also produces several possibly reactive intermediate metabolites, including chloral, TRI-epoxide, dichlorovinyl-cysteine (DCVC), dichloroacetyl chloride, dichloroacetic acid (DCA), and chloroform, which is further metabolized to phosgene that may covalently bind extensively to cellular lipids and proteins, and, to a much lesser degree, to DNA. The toxicities associated with TRI exposure are considered to reside in its reactive metabolites. The mutagenic and carcinogenic potential of TRI is also generally thought to be due to reactive intermediate biotransformation products rather than the parent molecule itself, although the biological mechanisms by which specific TRI metabolites exert their toxic activity observed in experimental animals and, in some cases, humans are not known. The binding intensity of TRI metabolites is greater in the liver than in the kidney. Comparative studies of biotransformation of TRI in rats and mice failed to detect any major species or strain differences in metabolism. Quantitative differences in metabolism across species probably result from differences in metabolic rate and enterohepatic recirculation of metabolites. Aging rats have less capacity for microsomal metabolism, as reflected by covalent binding of TRI, than either adult or young rats. This is likely to be the same in other species, including humans. The experimental evidence is consistent with the metabolic pathways for TRI being qualitatively similar in mice, rats, and humans. The formation of the major metabolites--TCE, TCE-glucuronide, and TCA--may be explained by the production of chloral as an intermediate after the initial oxidation of TRI to TRI-epoxide.(ABSTRACT TRUNCATED AT 400 WORDS)
Elemental mercury (Hg0) is a highly toxic chemical with increasing public health concern. Although the lung receives the highest exposure to Hg0 vapor, it is resistant to Hg0 toxicity relative to the kidney and brain. In an earlier study, exposure of rats to 4 mg Hg0 vapor/m3, 2 h per day for 10 days, did not produce pathological alterations in the lung but increased metallothionein and glutathione S-transferase in the kidney. This study was undertaken to examine pulmonary gene expression associated with Hg0 vapor inhalation. Total RNA was extracted from lung tissues of rats, previously exposed to air or Hg0 vapor, and subjected to microarray analysis. Hg0 vapor exposure increased the expression of genes encoding inflammatory responses, such as chemokines, tumor necrosis factor-alpha (TNFalpha), TNF-receptor-1, interleukin-2 (IL-2), IL-7, prostaglandin E2 receptor, and heat-shock proteins. As adaptive responses, glutathione S-transferases (GST-pi, mGST1), metallothionein, and thioredoxin peroxidase were all increased in response to Hg exposure. Some transporters, such as multidrug resistance-associated protein (MRP), P-glycoprotein, and zinc transporter ZnT1, were also increased in an attempt to reduce pulmonary Hg load. The expression of transcription factor c-jun/AP-1 and PI3-kinases was suppressed, while the expression of protein kinase-C was increased. Expression of epidermal fatty acid-binding protein was also enhanced. Real-time RT-PCR and Western blot analyses confirmed the microarray results. In summary, genomic analysis revealed an array of gene alterations in response to Hg0 vapor exposure, which could be important for the development of pulmonary adaptation to Hg during Hg0 vapor inhalation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.