A solid acid catalyst consisted of sulfonic groups covalently bound to an inorganic matrice was developed to dehydrate 2,3-butanediol into methyl ethyl ketone. Rate constant and apparent activation energy of the dehydration reaction were determined. The decay course of the catalyst was a two-stage curve. The catalyst was deactivated more rapidly in the first stage than in the second stage. The strategy of maintaining constant degree of dehydration was employed to lengthen the lifetime of catalyst. Treatment of the 2,3-butanediol containing fermentation broth with activated carbon greatly facilitated the subsequent dehydration reaction.
A mathematical model was developed for a percolation reactor in connection with consecutive first-order reactions. The model was designed to simulated acid-catalyzed cellulose or hemicellulose hydrolysis. The modeling process resulted in an analytically derived reactor equation, including mass-transfer effects, which was found to be useful in process desing and reactor optimization. The modedl was verified by experimental data obtained from hemicellulose hydrolysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.