We report a strong field effect observed at room temperature in epitaxially synthesized, as opposed to exfoliated, graphene. The graphene formed on the silicon face of a 4H silicon carbide substrate was photolithographically patterned into isolated active regions for the semimetal graphene-based transistors. Gold electrodes and a polymer dielectric were used in the top-gate transistors. The demonstration of a field effect mobility of 535 cm 2 /Vs was attributed to the transistor geometry that maximizes conductance modulation, although the mobility is lower than observed in exfoliated graphene possibly due to grain boundaries caused by the rough morphology of the substrate surface.
Photoelectrochemical etching of highly doped n-type 4H SiC in dilute hydrofluoric acid along different crystallographic orientations under low voltage and/or low current conditions is studied. Scanning electron microscope images show that anodization of the hexagonal polytype 4H SiC with subsequent pore formation proceeds anisotropically. It is proposed that under uv illumination the crystallographic planes terminated with silicon atoms are more resistant to electrolytic attack than the planes terminated with carbon and mixed silicon-carbon atoms. This model is used to explain the observed triangular-channel pore morphologies. A clear indication was found that the resultant pore structure does not depend on the direction of the external electric field applied to the sample. Electrical parameters recorded as part of the photoelectrochemical etching process are described and interpreted.
We have fabricated free-standing SiC nanoporous membranes in both p -type and n -type material. We showed that these membranes will permit the diffusion of proteins up to 29000 Daltons, while excluding larger proteins. By using radioactively labeled albumin, we also show that porous SiC has very low protein adsorption, comparable to the best commercially available polymer nanoporous membrane.
Two distinct boron-related centers are known in silicon carbide polytypes, one shallow (ionization energy ∼300 meV) and the other deep (∼650 meV). In this work, 4H SiC homoepitaxial films are intentionally doped with the shallow boron center by controlling the silicon to carbon source gas ratio during chemical vapor deposition, based on site competition epitaxy. The dominance of the shallow boron center for samples grown with a low Si/C ratio, favoring the incorporation of boron onto the silicon sublattice, is verified by the temperature dependent Hall effect, admittance spectroscopy and deep level transient spectroscopy. In these samples a peak near 3838 Å appears in the low temperature photoluminescence spectrum. Further experiments support the identification of this peak with the recombination of a four particle (bound exciton) complex associated with the neutral shallow boron acceptor as follows: (1) The intensity of the 3838 Å peak grows with added boron. (2) Momentum conserving phonon replicas are observed, with energies consistent with other four particle complexes in SiC. (3) With increasing temperature excited states are observed, as for the neutral aluminum and gallium acceptor four particle complexes. However, the intensity of the shallow boron spectrum is quenched at lower temperatures than the corresponding spectra for Al and Ga, and the lineshapes are strongly sample dependent. These results may be related to the unusual configurational and electronic structure of this center inferred from recent spin resonance experiments by other groups. When the Si/C ratio is high, the optical signatures of the deep boron center, nitrogen-boron donor-acceptor pairs and conduction band to neutral acceptor free-to-bound transitions, are observed in the photoluminescence. At T=2 K well resolved, detailed nitrogen-boron pair line spectra are observed in addition to the peak due to distant pairs. As the temperature is raised, the donor-acceptor pair spectrum decreases in intensity while the free-to-bound no-phonon peak appears. Extrapolation of the temperature dependence of the free-to-bound peak to T=0 K, after correction for the temperature dependence of the exciton energy gap, leads to the value EA(B)−EX=628±1 meV, where EA(B) is the ionization energy of the deep boron center and EX is the binding energy of the free exciton which, for 4H SiC, can only be estimated at this time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.