Despite the essential role that glycans play in many biological processes, their isomeric complexity makes their structural determination particularly challenging. Tandem mass spectrometry has played a central role in glycan analysis, and recent work has shown that fragments generated by collision-induced dissociation (CID) of disaccharides can retain the anomeric configuration of the glycosidic bond. If this result proves to be general, it would provide a powerful new tool for glycan sequencing. In this work, we use messenger-tagging infrared (IR) spectroscopy to investigate the generality of anomer retention in CID by exploring different fragmentation channels in glycans of increasing complexity. Our results demonstrate that anomericity seems to be retained irrespective of fragment size and branching.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.