Abstract. This paper describes a predicate calculus in which graph problems can be expressed. Any problem possessing such an expression can be solved in linear time on any recursively constructed graph, once its decomposition tree is known. Moreover, the linear-time algorithm can be generated automatically from the expression, because all our theorems are proved constructively. The calculus is founded upon a short list of particularly primitive predicates, which in turn are combined by fundamental logical operations. This framework is rich enough to include the vast majority of known linear-time solvable problems.We have obtained these results independently of similar results by Courcelle [11], [12], through utilization of the framework of Bern et al. [6]. We believe our formalism is more practical for programmers who would implement the automatic generation machinery, and more readily understood by many theorists.
Chlorsulfuron, thifensulfuron, bromoxynil, 2,4-D, glyphosate, and a combination of 2,4-D plus glyphosate were applied on newly planted and established ‘Lemberger’ wine grape at 1/3, 1/10, 1/33, and 1/100 of the maximum labelled rate in wheat or fallow to simulate exposure to drifted herbicides. All herbicides produced symptoms on grape but the most severe symptoms were with 2,4-D and the least severe with bromoxynil. Newly planted grape was more sensitive to herbicides than established grape. Although established grape recovered from injury caused by all treatments except 2,4-D and the highest rate of chlorsulfuron and glyphosate, newly planted grape recovered only from lower rates of bromoxynil. All herbicides resulted in diagnostic symptoms, but other symptoms were very similar to those caused by other stresses.
Tobacco-specific nitrosamine (TSNA) formation in tobacco is influenced by alkaloid levels and the availability of nitrosating agents. Tobacco types differ in their potential for TSNA accumulation due to genetic, agronomic, and curing factors. Highest TSNA concentrations are typically measured in burley tobaccos. One of the main genetic differences between burley and all other tobacco types is that this tobacco type is homozygous for recessive mutant alleles at the Yellow Burley 1 (Yb(1)) and Yellow Burley 2 (Yb(2)) loci. In addition, burley tobacco is typically fertilized at higher nitrogen (N) rates than most other tobacco types. This study utilized nearly isogenic lines (NILs) differing for the presence of dominant or recessive alleles at the Yb(1) and Yb(2) loci to investigate the potential influence of genes at these loci on TSNA accumulation. Three pairs of NILs were evaluated at three different nitrogen fertilization rates for alkaloid levels, nitrogen physiology measures, and TSNA accumulation after air-curing. As previously observed by others, positive correlations were observed between N application rates and TSNA accumulation. Recessive alleles at Yb(1) and Yb(2) were associated with increased alkaloid levels, reduced nitrogen use efficiency, reduced nitrogen utilization efficiency, and increased leaf nitrate nitrogen (NO(3)-N). Acting together, these factors contributed to significantly greater TSNA levels in genotypes possessing the recessive alleles at these two loci relative to those carrying the dominant alleles. The chlorophyll-deficient phenotype conferred by the recessive yb(1) and yb(2) alleles probably contributes in a substantial way to increase available NO(3)-N during curing and, consequently, increased potential for TSNA formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.