Regulated transcription controls the diversity, developmental pathways and spatial organization of the hundreds of cell types that make up a mammal. Using single-molecule cDNA sequencing, we mapped transcription start sites (TSSs) and their usage in human and mouse primary cells, cell lines and tissues to produce a comprehensive overview of mammalian gene expression across the human body. We find that few genes are truly ‘housekeeping’, whereas many mammalian promoters are composite entities composed of several closely separated TSSs, with independent cell-type-specific expression profiles. TSSs specific to different cell types evolve at different rates, whereas promoters of broadly expressed genes are the most conserved. Promoter-based expression analysis reveals key transcription factors defining cell states and links them to binding-site motifs. The functions of identified novel transcripts can be predicted by coexpression and sample ontology enrichment analyses. The functional annotation of the mammalian genome 5 (FANTOM5) project provides comprehensive expression profiles and functional annotation of mammalian cell-type-specific transcriptomes with wide applications in biomedical research.
Although it is generally accepted that cellular differentiation requires changes to transcriptional networks, dynamic regulation of promoters and enhancers at specific sets of genes has not been previously studied en masse. Exploiting the fact that active promoters and enhancers are transcribed, we simultaneously measured their activity in 19 human and 14 mouse time courses covering a wide range of cell types and biological stimuli. Enhancer RNAs, then messenger RNAs encoding transcription factors, dominated the earliest responses. Binding sites for key lineage transcription factors were simultaneously overrepresented in enhancers and promoters active in each cellular system. Our data support a highly generalizable model in which enhancer transcription is the earliest event in successive waves of transcriptional change during cellular differentiation or activation.
Many of the applications envisaged for human embryonic stem cells (hESC) undergoing cardiomyogenesis require that the differentiation procedure is robust and high yield. For many hESC lines currently available this is a challenge; beating areas are often obtained but subsequent analysis shows only few (<1%) cardiomyocytes actually present. Here the authors provide a protocol based on serum‐free coculture with a mouse endoderm‐like cell line (END2), which yields cultures containing on average 25% cardiomyocytes for two widely available hESC lines, hES2 and hES3. The authors also provide a variant on the protocol based on growth of hESC aggregates/embryoid bodies in END2‐conditioned medium and a method for dissociating beating aggregates without compromising cardiomyocyte viability so that they can be used for transplantation into animals or further (electrophysiological) analysis. Curr. Protoc. Stem Cell Biol. 2:1F.2.1‐1F.2.14. © 2007 by John Wiley & Sons, Inc.
The potential usefulness of human embryonic stem cells for therapy derives from their ability to form any cell in the body. This potential has been used to justify intensive research despite some ethical concerns. In parallel, scientists have searched for adult stem cells that can be used as an alternative to embryonic cells, and, for the heart at least, these efforts have led to promising results. However, most adult cardiomyocytes are unable to divide and form new cardiomyocytes and would therefore be unable to replace those lost as a result of disease. Basic questions--for example, whether cardiomyocyte replacement or alternatives, such as providing the damaged heart with new blood vessels or growth factors to activate resident stem cells, are the best approach--remain to be fully addressed. Despite this, preclinical studies on cardiomyocyte transplantation in animals and the first clinical trials with adult stem cells have recently been published with mixed results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.