Background
Despite reports of malaria and coronavirus diseases 2019 (COVID-19) co-infection, malaria-endemic regions have so far recorded fewer cases of COVID-19 and deaths from COVID-19, indicating a probable protection from the poor outcome of COVID-19 by malaria. On the contrary, other evidence suggests that malaria might contribute to the death caused by COVID-19. Hence, this paper reviewed existing evidence hypothesizing poor outcome or protection of COVID-19 patients when co-infected with malaria.
Methods
PRISMA guidelines for systematic review were employed in this study. Published articles from December 2019 to May 2021on COVID-19 and malaria co-infection and outcome were systematically searched in relevant and accessible databases following a pre-defined strategy. Studies involving human, in vivo animal studies, and in vitro studies were included.
Results
Twenty three (23) studies were included in the review out of the 3866 records identified in the selected scientific databases. Nine (9) papers reported on co-infection of COVID-19 and malaria. Five (5) papers provided information about synergism of malaria and COVID-19 poor prognosis, 2 papers reported on syndemic of COVID-19 and malaria intervention, and 7 studies indicated that malaria protects individuals from COVID-19.
Conclusions
Low incidence of COVID-19 in malaria-endemic regions supports the hypothesis that COVID-19 poor prognosis is prevented by malaria. Although further studies are required to ascertain this hypothesis, cross-immunity and common immunodominant isotopes provide strong evidence to support this hypothesis. Also, increase in co-inhibitory receptors and atypical memory B cells indicate synergy between COVID-19 and malaria outcome, though, more studies are required to make a definite conclusion.
BackgroundIncreasing resistance to current anti-malarial therapies requires a renewed effort in searching for alternative therapies to combat this challenge, and combination therapy is the preferred approach to address this. The present study confirms the anti-plasmodial effects of two compounds, cryptolepine and xylopic acid and the relationship that exists in their combined administration determined.MethodsAnti-plasmodial effect of cryptolepine (CYP) (3, 10, 30 mg kg−1) and xylopic acid (XA) (3, 10, 30 mg kg−1) was evaluated in Plasmodium berghei-infected male mice after a 6-day drug treatment. The respective doses which produced 50% chemosuppression (ED50) was determined by iterative fitting of the log-dose responses of both drugs. CYP and XA were then co-administered in a fixed dose combination of their ED50s (1:1) as well as different fractions of these combinations (1/2, 1/4, 1/8, 1/16 and 1/32) to find the experimental ED50 (Zexp). The nature of interaction between cryptolepine and xylopic acid was determined by constructing an isobologram to compare the Zexp with the theoretical ED50 (Zadd). Additionally, the effect of cryptolepine/xylopic acid co-administration on vital organs associated with malarial parasiticidal action was assessed.ResultsThe Zadd and Zexp were determined to be 12.75 ± 0.33 and 2.60 ± 0.41, respectively, with an interaction index of 0.2041. The Zexp was significantly (P < 0.001) below the additive isobole indicating that co-administration of cryptolepine and xylopic acid yielded a synergistic anti-plasmodial effect. This observed synergistic antiplasmodial effect did not have any significant deleterious effect on the kidney, liver and spleen. However, the testis were affected at high doses.ConclusionThe co-administration of cryptolepine and xylopic acid produces synergistic anti-malarial effect with minimal toxicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.