The number of large energy storage units installed in the power system has increased over the last few years. This fact remains closely linked to the increase in the share of renewable energy in electricity generation. This is necessary to maintain the stability of the grid, which is becoming increasingly difficult to maintain due to the growing number of renewable energy sources (RES). Energy production from these sources is difficult to estimate, and possible unplanned shortages and surpluses in production are the cause of voltage and frequency fluctuations, which is an undesirable state. Consequently, the use of energy storage not only contributes to the regulation of grid operation but can also, under appropriate conditions, constitute an additional load if too much energy is generated by RES, or the source when the generation from RES is insufficient. The main contributions of this paper are as follows: A presentation of practical results achieved by implementing two optimal control strategies for a 1 MW (0.5 MWh) battery energy storage (BES) cooperating with a large 144 MW photovoltaic farm. In the first case, the BES was used to generate curtailment at photovoltaic farm to avoid power grid overload. The second case focuses on maximizing profits from selling the energy produced in periods when the unit price for energy was the highest according to energy market forecasts. In both cases, the storage was used simultaneously to cover the producer’s own demand, which eliminated the costs associated with the purchase of energy from the operator, especially during the night supply. A technical and economic evaluation was prepared for both cases, considering the real profits from the investment. The potential of using the BES to increase the functionality of photovoltaic energy sources was determined and discussed in the paper.
An important aspect of the off-grid utilization of hybrid generation systems is the integration of energy storage facilities into their structures, which allows for improved power supply reliability. However, this results in a significant increase in the cost of such systems. Therefore, it is justified to use optimization resulting in the minimization of the selected economic indicator taking into account the most important technical constraints. For this reason, this work proposes an algorithm to optimize the structure of a hybrid off-grid power distribution system (with electrochemical energy storage), designed to supply a load with known daily energy demand. The authors recommend genetic algorithm utilization as well as a modified criterion for evaluating the quality of solutions based on the Levelized Cost of Energy (LCOE) index. Several technical and economic analyses were presented, including unit costs, power distribution of the wind and solar sections, nominal battery capacity, SSSI index (System Self-Sufficiency Index), etc. The model of the system includes durability of the elements which have a significant impact on the periodic battery replacement. The tests were carried out for two types of loads and two types of electrochemical batteries (NMC—Lithium Nickel Manganese Cobalt Oxide; and PbO2—Lead-Acid Battery), taking into account the forecast of an increased lifetime of NMC type batteries and decreasing their price within five years. The proposed synthesis method of photovoltaic-wind (PV-wind) hybrid off-line systems leads to limiting the energy capacity of electrochemical storages. Based on the analyses, the authors proposed recommended methods to improve (reduce) the value of the criterion index (LCOE) for PV-wind off-grid systems while maintaining the assumed level of power supply reliability.
Abstract. The paper presents problems related to the impact of electric vehicles connected to the power grid on energy parameters. Basic methods of control in power grids were discussed and results of the simulation were presented with regards to the power distribution, voltage drops and losses in the transmission lines. The simulation was conducted based on the example of CIGRE 11, to which electric vehicle charging stations were connected in several selected points, with the possibility of energy release into the grid. The obtained results were compared for the simulation conducted in two variants -without the connected electric vehicles and with them. The obtained results were analyzed and commented upon.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.