The target of rapamycin (TOR), as part of the rapamycinsensitive TOR complex 1 (TORC1), regulates various aspects of protein synthesis. Whether TOR functions in this process as part of TORC2 remains to be elucidated. Here, we demonstrate that mTOR, SIN1 and rictor, components of mammalian (m)TORC2, are required for phosphorylation of Akt and conventional protein kinase C (PKC) at the turn motif (TM) site. This TORC2 function is growth factor independent and conserved from yeast to mammals. TM site phosphorylation facilitates carboxyl-terminal folding and stabilizes newly synthesized Akt and PKC by interacting with conserved basic residues in the kinase domain. Without TM site phosphorylation, Akt becomes protected by the molecular chaperone Hsp90 from ubiquitination-mediated proteasome degradation. Finally, we demonstrate that mTORC2 independently controls the Akt TM and HM sites in vivo and can directly phosphorylate both sites in vitro. Our studies uncover a novel function of the TOR pathway in regulating protein folding and stability, processes that are most likely linked to the functions of TOR in protein synthesis.
Although Nogo-A has been identified in the central nervous system as an inhibitor of axonal regeneration, the peripheral roles of Nogo isoforms remain virtually unknown. Here, using a proteomic analysis to identify proteins enriched in caveolae and/or lipid rafts (CEM/LR), we show that Nogo-B is highly expressed in cultured endothelial and smooth muscle cells, as well as in intact blood vessels. The N terminus of Nogo-B promotes the migration of endothelial cells but inhibits the migration of vascular smooth muscle (VSM) cells, processes necessary for vascular remodeling. Vascular injury in Nogo-A/B-deficient mice promotes exaggerated neointimal proliferation, and adenoviral-mediated gene transfer of Nogo-B rescues the abnormal vascular expansion in those knockout mice. Our discovery that Nogo-B is a regulator of vascular homeostasis and remodeling broadens the functional scope of this family of proteins.
The Akt signaling pathway controls several cellular functions in the cardiovascular system; however, its role in atherogenesis is unknown. Here, we show that the genetic ablation of Akt1 on an apolipoprotein E knockout background (ApoE(-/-)Akt1(-/-)) increases aortic lesion expansion and promotes coronary atherosclerosis. Mechanistically, lesion formation is due to the enhanced expression of proinflammatory genes and endothelial cell and macrophage apoptosis. Bone marrow transfer experiments showing that macrophages from ApoE(-/-)Akt1(-/-) donors were not sufficient to worsen atherogenesis when transferred to ApoE(-/-) recipients suggest that lesion expansion in the ApoE(-/-)Akt1(-/-) strain might be of vascular origin. In the vessel wall, the loss of Akt1 increases inflammatory mediators and reduces eNOS phosphorylation, suggesting that Akt1 exerts vascular protection against atherogenesis. The presence of coronary lesions in ApoE(-/-)Akt1(-/-) mice provides a new model for studying the mechanisms of acute coronary syndrome in humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.