The social amoebae are exceptional in their ability to alternate between unicellular and multicellular forms. Here we describe the genome of the best-studied member of this group, Dictyostelium discoideum. The gene-dense chromosomes encode ~12,500 predicted proteins, a high proportion of which have long repetitive amino acid tracts. There are many genes for polyketide synthases and ABC transporters, suggesting an extensive secondary metabolism for producing and exporting small molecules. The genome is rich in complex repeats, one class of which is clustered and may serve as centromeres. Partial copies of the extrachromosomal rDNA element are found at the ends of each chromosome, suggesting a novel telomere structure and the use of a common mechanism to maintain both the rDNA and chromosomal termini. A proteome-based phylogeny shows that the amoebozoa diverged from the animal/fungal lineage after the plant/animal split, but Dictyostelium appears to have retained more of the diversity of the ancestral genome than either of these two groups.The amoebozoa are a richly diverse group of organisms whose genomes remain largely unexplored. The soil-dwelling social amoeba Dictyostelium discoideum has been actively studied for the past fifty years and has contributed greatly to our understanding of cellular motility, signalling and interaction 1 . For example, studies in Dictyostelium provided the first descriptions of a eukaryotic cell chemo-attractant and a cell-cell adhesion protein 2, 3 .Dictyostelium amoebae inhabit forest soil consuming bacteria and yeast, which they track by chemotaxis. Starvation, however, prompts the solitary cells to aggregate and to develop as a true multicellular organism, producing a fruiting body comprised of a cellular, cellulosic stalk supporting a bolus of spores. Thus, Dictyostelium has evolved mechanisms that direct the differentiation of a homogeneous population of cells into distinct cell types, regulate the proportions between tissues and orchestrate the construction of an effective structure for the dispersal of spores 4 . Many of the genes necessary for these processes in Dictyostelium were Eichinger et al. Page 2 Nature. Author manuscript; available in PMC 2006 January 27. NIH-PA Author ManuscriptNIH-PA Author Manuscript NIH-PA Author Manuscript also inherited by metazoa and fashioned through evolution for use within many different modes of development.The amoebozoa are also noteworthy as representing one of the earliest branches from the last common ancestor of all eukaryotes. Each of the surviving branches of the crown group of eukaryotes provides an example of the ways in which the ancestral genome has been sculpted and adapted by lineage-specific gene duplication, divergence and deletion. Comparison between representatives of these branches promises to shed light not only on the nature and content of the ancestral eukaryotic genome, but on the diversity of ways in which its components have been adapted to meet the needs of complex organisms. The genome of Dictyosteliu...
Macropinocytosis is a fundamental mechanism that allows cells to take up extracellular liquid into large vesicles. It critically depends on the formation of a ring of protrusive actin beneath the plasma membrane, which develops into the macropinocytic cup. We show that macropinocytic cups in Dictyostelium are organised around coincident intense patches of PIP3, active Ras and active Rac. These signalling patches are invariably associated with a ring of active SCAR/WAVE at their periphery, as are all examined structures based on PIP3 patches, including phagocytic cups and basal waves. Patch formation does not depend on the enclosing F-actin ring, and patches become enlarged when the RasGAP NF1 is mutated, showing that Ras plays an instructive role. New macropinocytic cups predominantly form by splitting from existing ones. We propose that cup-shaped plasma membrane structures form from self-organizing patches of active Ras/PIP3, which recruit a ring of actin nucleators to their periphery.DOI: http://dx.doi.org/10.7554/eLife.20085.001
Chemotaxing neutrophils and Dictyostelium amoebae produce in their plasma membranes the signaling lipid PI(3,4,5)P3 (PIP3) in gradients, which are orientated with the external chemotactic gradient and have been proposed to act as an internal compass, guiding movement of the cell. Evidence for and against this idea exists, but in all cases it depends on the use of inhibitors or gene knockouts, which may only incompletely abolish the PIP3 gradient. We have created a multiple gene-knockout strain in Dictyostelium lacking all five type-1 phosphoinositide 3-kinases encoded in the genome and the PTEN phosphatase and have thus removed all known ways for chemoattractant to produce PIP3 gradients in the plasma membrane. The resulting sextuple mutant is able to chemotax to cyclic-AMP with near wild-type efficiency and to trigger actin polymerization without apparent defect. There is, however, a consistent defect in movement speed in chemotaxis and especially in random movement. This work shows that polarization of membrane PIP3 is not necessary for accurate chemotaxis, but it can affect cell speed. A signaling pathway from receptor to cytoskeleton able to guide cells independently of polarized PIP3 and type-1 phosphoinositide 3-kinases must exist.
SBDS protein (deficient in the inherited leukemia-predisposition disorder Shwachman-Diamond syndrome) and the GTPase EFL1 (an EF-G homolog) activate nascent 60S ribosomal subunits for translation by catalyzing eviction of the antiassociation factor eIF6 from nascent 60S ribosomal subunits. However, the mechanism is completely unknown. Here, we present cryo-EM structures of human SBDS and SBDS-EFL1 bound to Dictyostelium discoideum 60S ribosomal subunits with and without endogenous eIF6. SBDS assesses the integrity of the peptidyl (P) site, bridging uL16 (mutated in T-cell acute lymphoblastic leukemia) with uL11 at the P-stalk base and the sarcin-ricin loop. Upon EFL1 binding, SBDS is repositioned around helix 69, thus facilitating a conformational switch in EFL1 that displaces eIF6 by competing for an overlapping binding site on the 60S ribosomal subunit. Our data reveal the conserved mechanism of eIF6 release, which is corrupted in both inherited and sporadic leukemias.Reprints and permissions information is available online at http://www.nature.com/reprints/index.html.Correspondence should be addressed to A.J.W. (ajw1000@cam.ac.uk). Accession codes. The cryo-EM density maps have been deposited in the Electron Microscopy Data Bank under accession codes EMD-3145 (60S-eIF6-SBDS), EMD-3146 (60S-eIF6-SBDS-EFL1) and EMD-3147 (60S-SBDS-EFL1). The corresponding atomic coordinates have been deposited in the Protein Data Bank under accession codes 5AN9, 5ANB and 5ANC, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.