We study a binary tree-structured multi-degree-of-freedom nonlinear oscillator with impulsive and continuous excitations. The response of this model is studied for excitations that are applied to the largest masses. It is shown how choosing the mass of the smallest blocks influence the response of the system regarding the dissipation and how efficient targeted energy transfer is realized in the system. The simplified frequency energy plot is introduced as a means of analyzing the response of multi-degree-of-freedom systems for impulsive excitations. For continuous excitations it is shown that the smallest masses (nonlinear energy sinks) are active only inside specific nonlinear frequency bands when the excitation amplitude is sufficiently high.
Mathematics Subject Classification (2020) 34 · 70 · 76
We study a binary tree-structured multi-degree-of-freedom nonlinear oscillator with impulsive and continuous excitations. The response of this model is studied for excitations that are applied to the largest masses. It is shown how choosing the mass of the smallest blocks influences the response of the system regarding the dissipation and how efficient targeted energy transfer is realized in the system. The simplified frequency energy plot is introduced as a means of analyzing the response of multi-degree-of-freedom systems for impulsive excitations. For continuous excitations, it is shown that the smallest masses (nonlinear energy sinks) are active only inside specific nonlinear frequency bands when the excitation amplitude is sufficiently high.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.